This commit is contained in:
houjunxiang
2025-10-09 18:19:55 +08:00
parent f2ffc65094
commit 386f1e7466
1553 changed files with 284685 additions and 32820 deletions

View File

@@ -0,0 +1,3 @@
export * as SM2 from './lib/sm2/'
export * as SM3 from './lib/sm3'
export * as SM4 from './lib/sm4'

View File

@@ -0,0 +1,3 @@
export const C1C2C3 = 0
export const C1C3C2 = 1
export const PC = '04' // 未压缩

View File

@@ -0,0 +1,415 @@
// Basic Javascript Elliptic Curve implementation
// Ported loosely from BouncyCastle's Java EC code
// Only Fp curves implemented for now
// Requires jsbn.js and jsbn2.js
import { BigInteger } from 'jsbn'
const { Barrett } = BigInteger.prototype
// Basic Javascript Elliptic Curve implementation
// Ported loosely from BouncyCastle's Java EC code
// Only Fp curves implemented for now
// Requires jsbn.js and jsbn2.js
// ----------------
// ECFieldElementFp
// constructor
function ECFieldElementFp(q, x) {
this.x = x
// TODO if(x.compareTo(q) >= 0) error
this.q = q
}
function feFpEquals(other) {
if (other == this) return true
return this.q.equals(other.q) && this.x.equals(other.x)
}
function feFpToBigInteger() {
return this.x
}
function feFpNegate() {
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q))
}
function feFpAdd(b) {
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q))
}
function feFpSubtract(b) {
return new ECFieldElementFp(
this.q,
this.x.subtract(b.toBigInteger()).mod(this.q)
)
}
function feFpMultiply(b) {
return new ECFieldElementFp(
this.q,
this.x.multiply(b.toBigInteger()).mod(this.q)
)
}
function feFpSquare() {
return new ECFieldElementFp(this.q, this.x.square().mod(this.q))
}
function feFpDivide(b) {
return new ECFieldElementFp(
this.q,
this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)
)
}
ECFieldElementFp.prototype.equals = feFpEquals
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger
ECFieldElementFp.prototype.negate = feFpNegate
ECFieldElementFp.prototype.add = feFpAdd
ECFieldElementFp.prototype.subtract = feFpSubtract
ECFieldElementFp.prototype.multiply = feFpMultiply
ECFieldElementFp.prototype.square = feFpSquare
ECFieldElementFp.prototype.divide = feFpDivide
// ----------------
// ECPointFp
// constructor
export function ECPointFp(curve, x, y, z) {
this.curve = curve
this.x = x
this.y = y
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
if (z == null) {
this.z = BigInteger.ONE
} else {
this.z = z
}
this.zinv = null
//TODO: compression flag
}
function pointFpGetX() {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q)
}
var r = this.x.toBigInteger().multiply(this.zinv)
this.curve.reduce(r)
return this.curve.fromBigInteger(r)
}
function pointFpGetY() {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q)
}
var r = this.y.toBigInteger().multiply(this.zinv)
this.curve.reduce(r)
return this.curve.fromBigInteger(r)
}
function pointFpEquals(other) {
if (other == this) return true
if (this.isInfinity()) return other.isInfinity()
if (other.isInfinity()) return this.isInfinity()
var u, v
// u = Y2 * Z1 - Y1 * Z2
u = other.y
.toBigInteger()
.multiply(this.z)
.subtract(this.y.toBigInteger().multiply(other.z))
.mod(this.curve.q)
if (!u.equals(BigInteger.ZERO)) return false
// v = X2 * Z1 - X1 * Z2
v = other.x
.toBigInteger()
.multiply(this.z)
.subtract(this.x.toBigInteger().multiply(other.z))
.mod(this.curve.q)
return v.equals(BigInteger.ZERO)
}
function pointFpIsInfinity() {
if (this.x == null && this.y == null) return true
return (
this.z.equals(BigInteger.ZERO) &&
!this.y.toBigInteger().equals(BigInteger.ZERO)
)
}
function pointFpNegate() {
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z)
}
function pointFpAdd(b) {
if (this.isInfinity()) return b
if (b.isInfinity()) return this
// u = Y2 * Z1 - Y1 * Z2
var u = b.y
.toBigInteger()
.multiply(this.z)
.subtract(this.y.toBigInteger().multiply(b.z))
.mod(this.curve.q)
// v = X2 * Z1 - X1 * Z2
var v = b.x
.toBigInteger()
.multiply(this.z)
.subtract(this.x.toBigInteger().multiply(b.z))
.mod(this.curve.q)
if (BigInteger.ZERO.equals(v)) {
if (BigInteger.ZERO.equals(u)) {
return this.twice() // this == b, so double
}
return this.curve.getInfinity() // this = -b, so infinity
}
var THREE = new BigInteger('3')
var x1 = this.x.toBigInteger()
var y1 = this.y.toBigInteger()
var x2 = b.x.toBigInteger()
var y2 = b.y.toBigInteger()
var v2 = v.square()
var v3 = v2.multiply(v)
var x1v2 = x1.multiply(v2)
var zu2 = u.square().multiply(this.z)
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2
.subtract(x1v2.shiftLeft(1))
.multiply(b.z)
.subtract(v3)
.multiply(v)
.mod(this.curve.q)
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2
.multiply(THREE)
.multiply(u)
.subtract(y1.multiply(v3))
.subtract(zu2.multiply(u))
.multiply(b.z)
.add(u.multiply(v3))
.mod(this.curve.q)
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q)
return new ECPointFp(
this.curve,
this.curve.fromBigInteger(x3),
this.curve.fromBigInteger(y3),
z3
)
}
function pointFpTwice() {
if (this.isInfinity()) return this
if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity()
// TODO: optimized handling of constants
var THREE = new BigInteger('3')
var x1 = this.x.toBigInteger()
var y1 = this.y.toBigInteger()
var y1z1 = y1.multiply(this.z)
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q)
var a = this.curve.a.toBigInteger()
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE)
if (!BigInteger.ZERO.equals(a)) {
w = w.add(this.z.square().multiply(a))
}
w = w.mod(this.curve.q)
//this.curve.reduce(w);
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w
.square()
.subtract(x1.shiftLeft(3).multiply(y1sqz1))
.shiftLeft(1)
.multiply(y1z1)
.mod(this.curve.q)
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w
.multiply(THREE)
.multiply(x1)
.subtract(y1sqz1.shiftLeft(1))
.shiftLeft(2)
.multiply(y1sqz1)
.subtract(w.square().multiply(w))
.mod(this.curve.q)
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q)
return new ECPointFp(
this.curve,
this.curve.fromBigInteger(x3),
this.curve.fromBigInteger(y3),
z3
)
}
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
function pointFpMultiply(k) {
if (this.isInfinity()) return this
if (k.signum() == 0) return this.curve.getInfinity()
var e = k
var h = e.multiply(new BigInteger('3'))
var neg = this.negate()
var R = this
var i
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice()
var hBit = h.testBit(i)
var eBit = e.testBit(i)
if (hBit != eBit) {
R = R.add(hBit ? this : neg)
}
}
return R
}
// Compute this*j + x*k (simultaneous multiplication)
function pointFpMultiplyTwo(j, x, k) {
var i
if (j.bitLength() > k.bitLength()) i = j.bitLength() - 1
else i = k.bitLength() - 1
var R = this.curve.getInfinity()
var both = this.add(x)
while (i >= 0) {
R = R.twice()
if (j.testBit(i)) {
if (k.testBit(i)) {
R = R.add(both)
} else {
R = R.add(this)
}
} else {
if (k.testBit(i)) {
R = R.add(x)
}
}
--i
}
return R
}
ECPointFp.prototype.getX = pointFpGetX
ECPointFp.prototype.getY = pointFpGetY
ECPointFp.prototype.equals = pointFpEquals
ECPointFp.prototype.isInfinity = pointFpIsInfinity
ECPointFp.prototype.negate = pointFpNegate
ECPointFp.prototype.add = pointFpAdd
ECPointFp.prototype.twice = pointFpTwice
ECPointFp.prototype.multiply = pointFpMultiply
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo
// ----------------
// ECCurveFp
// constructor
export function ECCurveFp(q, a, b) {
this.q = q
this.a = this.fromBigInteger(a)
this.b = this.fromBigInteger(b)
this.infinity = new ECPointFp(this, null, null)
this.reducer = new Barrett(this.q)
}
function curveFpGetQ() {
return this.q
}
function curveFpGetA() {
return this.a
}
function curveFpGetB() {
return this.b
}
function curveFpEquals(other) {
if (other == this) return true
return (
this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b)
)
}
function curveFpGetInfinity() {
return this.infinity
}
function curveFpFromBigInteger(x) {
return new ECFieldElementFp(this.q, x)
}
function curveReduce(x) {
this.reducer.reduce(x)
}
// for now, work with hex strings because they're easier in JS
function curveFpDecodePointHex(s) {
switch (
parseInt(s.substr(0, 2), 16) // first byte
) {
case 0:
return this.infinity
case 2:
case 3:
// point compression not supported yet
return null
case 4:
case 6:
case 7:
var len = (s.length - 2) / 2
var xHex = s.substr(2, len)
var yHex = s.substr(len + 2, len)
return new ECPointFp(
this,
this.fromBigInteger(new BigInteger(xHex, 16)),
this.fromBigInteger(new BigInteger(yHex, 16))
)
default:
// unsupported
return null
}
}
function curveFpEncodePointHex(p) {
if (p.isInfinity()) return '00'
var xHex = p.getX().toBigInteger().toString(16)
var yHex = p.getY().toBigInteger().toString(16)
var oLen = this.getQ().toString(16).length
if (oLen % 2 != 0) oLen++
while (xHex.length < oLen) {
xHex = '0' + xHex
}
while (yHex.length < oLen) {
yHex = '0' + yHex
}
return '04' + xHex + yHex
}
ECCurveFp.prototype.getQ = curveFpGetQ
ECCurveFp.prototype.getA = curveFpGetA
ECCurveFp.prototype.getB = curveFpGetB
ECCurveFp.prototype.equals = curveFpEquals
ECCurveFp.prototype.getInfinity = curveFpGetInfinity
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger
ECCurveFp.prototype.reduce = curveReduce
ECCurveFp.prototype.decodePointHex = curveFpDecodePointHex
ECCurveFp.prototype.encodePointHex = curveFpEncodePointHex

View File

@@ -0,0 +1,238 @@
import toArrayBuffer from 'to-arraybuffer'
import { Buffer } from 'buffer' // 兼容浏览器环境
import { BigInteger, SecureRandom } from 'jsbn'
import { ECCurveFp } from './ec'
import { C1C2C3, C1C3C2, PC } from './const'
import { leftPad } from '../utils'
import { digest } from '../sm3'
// SM2 相关常量
export const constants = { C1C2C3, C1C3C2, PC }
const rng = new SecureRandom()
const { curve, G, n } = (() => {
// p: 大于 3 的素数
const p = new BigInteger(
'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF',
16
)
// ab: Fq 中的元素,它们定义 Fq 上的一条椭圆曲线 E
const a = new BigInteger(
'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC',
16
)
const b = new BigInteger(
'28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93',
16
)
const curve = new ECCurveFp(p, a, b)
// 椭圆曲线的一个基点,其阶为素数
const gxHex =
'32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7'
const gyHex =
'BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0'
const G = curve.decodePointHex(PC + gxHex + gyHex)
// 基点 G 的阶
const n = new BigInteger(
'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123',
16
)
return { curve, G, n }
})()
/**
* 密钥派生函数
* a) 初始化一个 32 比特构成的计数器 ct=0x00000001
* b) 对 i 从 1 到 ⌈klen/v⌉ 执行
* b.1) 计算 Hai=Hv(Z ∥ ct)
* b.2) ct++
* c) 若 klen/v 是整数,令 Ha!⌈klen/v⌉ = Ha⌈klen/v⌉否则令 Ha!⌈klen/v⌉ 为 Ha⌈klen/v⌉ 最左边的 (klen (v × ⌊klen/v⌋)) 比特
* d) 令K = Ha1||Ha2|| · · · ||Ha⌈klen/v⌉1||Ha!⌈klen/v⌉
*/
function KDF(Z, klen) {
const list = []
const times = Math.ceil(klen / 32)
const mod = klen % 32
for (let i = 1; i <= times; i++) {
const ct = Buffer.allocUnsafe(4)
ct.writeUInt32BE(i)
const hash = digest(Buffer.concat([Z, ct]))
// Fix: 浏览器端 Buffer.concat 实现有问题,处理不了 list 总长度超过 klen 的情况
list.push(
i === times && mod ? Buffer.from(hash).slice(0, mod) : Buffer.from(hash)
)
}
return Buffer.concat(list, klen)
}
/**
* 生成密钥对
* a) 用随机数发生器产生整数 d ∈ [1,n2]
* b) G 为基点,计算点 P = (xP,yP) = [d]G
* c) 密钥对是 (d,P),其中 d 为私钥P 为公钥
*/
export const generateKeyPair = () => {
// a) 用随机数发生器产生整数 d ∈ [1,n2]
const d = new BigInteger(n.bitLength(), rng)
.mod(n.subtract(new BigInteger('2')))
.add(BigInteger.ONE)
const privateKey = leftPad(d.toString(16), 64)
// b) G 为基点,计算点 P = (xP,yP) = [d]G
const P = G.multiply(d)
const Px = leftPad(P.getX().toBigInteger().toString(16), 64)
const Py = leftPad(P.getY().toBigInteger().toString(16), 64)
const publicKey = PC + Px + Py
// 密钥对是 (d,P),其中 d 为私钥P 为公钥
return { privateKey, publicKey }
}
/**
* 设需要发送的消息为比特串 Mklen 为 M 的比特长度。
* 为了对明文 M 进行加密,作为加密者的用户 A 应实现以下运算步骤:
* A1用随机数发生器产生随机数 k∈[1,n-1]
* A2计算椭圆曲线点 C1=[k]G=(x1,y1)
* A3计算椭圆曲线点 S=[h]PB若 S 是无穷远点,则报错并退出
* A4计算椭圆曲线点 [k]PB=(x2,y2)
* A5计算 t=KDF(x2 ∥ y2, klen),若 t 为全 0 比特串,则返回 A1
* A6计算 C2 = M ⊕ t
* A7计算 C3 = Hash(x2 ∥ M ∥ y2)
* A8输出密文 C = C1 ∥ C2 ∥ C3 or C1 ∥ C3 ∥ C2
*
* @param {string|Buffer|ArrayBuffer} data
* @param {string} publicKey
*/
export function encrypt(data, publicKey, options) {
const { mode = C1C3C2, inputEncoding, outputEncoding, pc } = options || {}
// 明文消息类型校验 `string` | `ArrayBuffer` | `Buffer`
if (typeof data === 'string') {
data = Buffer.from(data, inputEncoding || 'utf8')
} else if (data instanceof ArrayBuffer) {
data = Buffer.from(data)
}
if (!Buffer.isBuffer(data)) {
throw new TypeError(
`Expected "string" | "Buffer" | "ArrayBuffer" but received "${Object.prototype.toString.call(
data
)}"`
)
}
// 随机数 k∈[1,n-1]
const k = new BigInteger(n.bitLength(), rng)
.mod(n.subtract(BigInteger.ONE))
.add(BigInteger.ONE)
// C1 = [k]G = (x1,y1)
const point1 = G.multiply(k)
const x1 = leftPad(point1.getX().toBigInteger().toString(16), 64)
const y1 = leftPad(point1.getY().toBigInteger().toString(16), 64)
const C1 = x1 + y1
// TODO: 计算椭圆曲线点 S=[h]PB若 S 是无穷远点,则报错并退出
// [k]PB = (x2,y2)
const point2 = curve.decodePointHex(publicKey).multiply(k)
const x2 = leftPad(point2.getX().toBigInteger().toString(16), 64)
const y2 = leftPad(point2.getY().toBigInteger().toString(16), 64)
// t = KDF(x2 ∥ y2, klen),若 t 为全 0 比特串,则返回 A1
const t = KDF(Buffer.from(x2 + y2, 'hex'), data.length)
// C2 = M ⊕ t
const C2 = leftPad(
new BigInteger(data.toString('hex'), 16)
.xor(new BigInteger(t.toString('hex'), 16))
.toString(16),
data.length * 2
)
// C3 = Hash(x2 ∥ M ∥ y2)
const C3 = digest(x2 + data.toString('hex') + y2, 'hex', 'hex')
const buff = Buffer.from((pc ? '04' : '') + (mode === C1C2C3 ? C1 + C2 + C3 : C1 + C3 + C2), 'hex')
return outputEncoding ? buff.toString(outputEncoding) : toArrayBuffer(buff)
}
/**
* 设 klen 为密文中 C2 的比特长度
* 为了对密文 C= C1 ∥ C2 ∥ C3 进行解密作为解密者的用户B应实现以下运算步骤
* B1从 C 中取出比特串 C1转换为椭圆曲线上的点
* B2计算椭圆曲线点 S=[h]C1若 S 是无穷远点,则报错并退出;
* B3计算 [dB]C1=(x2,y2),将坐标 x2、y2 的数据类型转换为比特串;
* B4计算 t=KDF(x2 ∥ y2, klen),若 t 为全 0 比特串,则报错并退出;
* B5从 C 中取出比特串 C2计算 M = C2 ⊕ t
* B6计算 u = Hash(x2 ∥ M ∥ y2),从 C 中取出比特串 C3若u ̸= C3则报错并退出
* B7输出明文M
*
* @param {string|Buffer|ArrayBuffer} data
* @param {string} publicKey
*/
export function decrypt(data, privateKey, options) {
const { mode = C1C3C2, inputEncoding, outputEncoding, pc } = options || {}
// 密文数据类型校验 `string` | `ArrayBuffer` | `Buffer`
if (typeof data === 'string') {
data = Buffer.from(data, inputEncoding)
} else if (data instanceof ArrayBuffer) {
data = Buffer.from(data)
}
if (!Buffer.isBuffer(data)) {
throw new TypeError(
`Expected "string" | "Buffer" | "ArrayBuffer" but received "${Object.prototype.toString.call(
data
)}"`
)
}
data = pc ? data.slice(1) : data
const unit = 32
// 从 C 中取出比特串 C1转换为椭圆曲线上的点
const x1 = data.slice(0, unit).toString('hex')
const y1 = data.slice(unit, 2 * unit).toString('hex')
const point1 = curve.decodePointHex(PC + x1 + y1)
// TODO: 计算椭圆曲线点 S=[h]C1若 S 是无穷远点,则报错并退出;
// [dB]C1 = (x2,y2)
const point2 = point1.multiply(new BigInteger(privateKey, 16))
const x2 = leftPad(point2.getX().toBigInteger().toString(16), 64)
const y2 = leftPad(point2.getY().toBigInteger().toString(16), 64)
// 根据拼接模式拆分数据 C2, C3
let C3 = data.slice(2 * unit, 3 * unit)
let C2 = data.slice(3 * unit)
if (mode === C1C2C3) {
C3 = data.slice(data.length - unit)
C2 = data.slice(2 * unit, data.length - unit)
}
// t = KDF(x2 ∥ y2, klen),若 t 为全 0 比特串,则返回 A1
const t = KDF(Buffer.from(x2 + y2, 'hex'), C2.length)
// M = C2 ⊕ t
const M = new BigInteger(C2.toString('hex'), 16)
.xor(new BigInteger(t.toString('hex'), 16))
.toString(16)
// 计算 u = Hash(x2 ∥ M ∥ y2)
const u = digest(x2 + M + y2, 'hex', 'hex')
// 合法性校验
const verified = u === C3.toString('hex')
const buff = verified ? Buffer.from(M, 'hex') : Buffer.alloc(0)
return outputEncoding ? buff.toString(outputEncoding) : toArrayBuffer(buff)
}

View File

@@ -0,0 +1,147 @@
import toArrayBuffer from 'to-arraybuffer'
import { Buffer } from 'buffer' // 兼容浏览器环境
import { leftShift } from './utils'
// 官方文档以比特作为操作单位,此处以字节作为操作单位。
const padding = (buf) => {
// 首字节 0b10000000 填充
const p1 = Buffer.alloc(1, 0x80)
// 取值 "0" 的 k 比特填充
let k = buf.length % 64 // 64 * 8 === 512
k = k >= 56 ? 64 - (k % 56) - 1 : 56 - k - 1 // 56 * 8 === 448
const p2 = Buffer.alloc(k, 0)
// 64 比特(8 字节)的消息长度填充
const p3 = Buffer.alloc(8)
const size = buf.length * 8 // 不超过 2^53 -1
p3.writeUInt32BE(Math.floor(size / 2 ** 32), 0) // 高 32 位
p3.writeUInt32BE(size % 2 ** 32, 4) // 低 32 位
return Buffer.concat([buf, p1, p2, p3], buf.length + 1 + k + 8)
}
const T = (j) => (j < 16 ? 0x79cc4519 : 0x7a879d8a)
const FF = (X, Y, Z, j) => (j < 16 ? X ^ Y ^ Z : (X & Y) | (X & Z) | (Y & Z))
const GG = (X, Y, Z, j) => (j < 16 ? X ^ Y ^ Z : (X & Y) | (~X & Z))
const P0 = (X) => X ^ leftShift(X, 9) ^ leftShift(X, 17)
const P1 = (X) => X ^ leftShift(X, 15) ^ leftShift(X, 23)
// 消息扩展(512-bits): 16 个字 => 132 个字
const extendFn = (Bi) => {
const W = new Array(132)
// 将消息分组 B(i) 划分为 16 个字 W0, W1, · · · , W15
Bi.forEach((v, i) => {
W[i] = v
})
/**
FOR j=16 TO 67
Wj ← P1(Wj16 ⊕ Wj9 ⊕ (Wj3 ≪ 15)) ⊕ (Wj13 ≪ 7) ⊕ Wj6
ENDFOR
*/
for (let j = 16; j < 68; j++) {
W[j] =
P1(W[j - 16] ^ W[j - 9] ^ leftShift(W[j - 3], 15)) ^
leftShift(W[j - 13], 7) ^
W[j - 6]
}
/**
FOR j=0 TO 63
Wj = Wj ⊕ Wj+4
ENDFOR
*/
for (let j = 0; j < 64; j++) {
W[j + 68] = W[j] ^ W[j + 4]
}
return W
}
// 压缩函数
// - Vi => 8 个字(256-bits)
// - Bi => 16 个字(512-bits)
const CF = (Vi, Bi, i) => {
const W = extendFn(Bi) // 消息扩展, 返回 132 个字
let [A, B, C, D, E, F, G, H] = Vi
let SS1, SS2, TT1, TT2
for (let j = 0; j < 64; j++) {
SS1 = leftShift(leftShift(A, 12) + E + leftShift(T(j), j), 7)
SS2 = SS1 ^ leftShift(A, 12)
TT1 = FF(A, B, C, j) + D + SS2 + W[j + 68]
TT2 = GG(E, F, G, j) + H + SS1 + W[j]
D = C
C = leftShift(B, 9)
B = A
A = TT1
H = G
G = leftShift(F, 19)
F = E
E = P0(TT2)
}
return [
A ^ Vi[0],
B ^ Vi[1],
C ^ Vi[2],
D ^ Vi[3],
E ^ Vi[4],
F ^ Vi[5],
G ^ Vi[6],
H ^ Vi[7]
]
}
export const digest = (data, inputEncoding, outputEncoding) => {
// 输入参数校验 `string` | `ArrayBuffer` | `Buffer`
if (typeof data === 'string') {
data = Buffer.from(data, inputEncoding || 'utf8')
} else if (data instanceof ArrayBuffer) {
data = Buffer.from(data)
}
if (!Buffer.isBuffer(data)) {
throw new TypeError(
`Expected "string" | "Buffer" | "ArrayBuffer" but received "${Object.prototype.toString.call(
data
)}"`
)
}
data = padding(data) // 数据填充
const n = data.length / 64 // 512 比特对应 64 字节
const B = new Array(n)
for (let i = 0; i < n; i++) {
B[i] = new Array(16)
for (let j = 0; j < 16; j++) {
const offset = i * 64 + j * 4
B[i][j] = data.readUInt32BE(offset)
}
}
const V = new Array(n)
V[0] = [
0x7380166f,
0x4914b2b9,
0x172442d7,
0xda8a0600,
0xa96f30bc,
0x163138aa,
0xe38dee4d,
0xb0fb0e4e
]
// 迭代压缩
for (let i = 0; i < n; i++) {
V[i + 1] = CF(V[i], B[i], i)
}
const hash = Buffer.alloc(32)
V[n].forEach((i32, j) => hash.writeInt32BE(i32, j * 4))
return outputEncoding ? hash.toString(outputEncoding) : toArrayBuffer(hash)
}

View File

@@ -0,0 +1,604 @@
import toArrayBuffer from 'to-arraybuffer'
import { Buffer } from 'buffer' // 兼容浏览器环境
import { leftShift } from './utils'
// 两种分组模式
const ECB = 1
const CBC = 2
// SM4 相关常量
export const constants = { ECB, CBC }
// S 盒(非线性变换)
const SBOX_TABLE = [
[
0xd6,
0x90,
0xe9,
0xfe,
0xcc,
0xe1,
0x3d,
0xb7,
0x16,
0xb6,
0x14,
0xc2,
0x28,
0xfb,
0x2c,
0x05
],
[
0x2b,
0x67,
0x9a,
0x76,
0x2a,
0xbe,
0x04,
0xc3,
0xaa,
0x44,
0x13,
0x26,
0x49,
0x86,
0x06,
0x99
],
[
0x9c,
0x42,
0x50,
0xf4,
0x91,
0xef,
0x98,
0x7a,
0x33,
0x54,
0x0b,
0x43,
0xed,
0xcf,
0xac,
0x62
],
[
0xe4,
0xb3,
0x1c,
0xa9,
0xc9,
0x08,
0xe8,
0x95,
0x80,
0xdf,
0x94,
0xfa,
0x75,
0x8f,
0x3f,
0xa6
],
[
0x47,
0x07,
0xa7,
0xfc,
0xf3,
0x73,
0x17,
0xba,
0x83,
0x59,
0x3c,
0x19,
0xe6,
0x85,
0x4f,
0xa8
],
[
0x68,
0x6b,
0x81,
0xb2,
0x71,
0x64,
0xda,
0x8b,
0xf8,
0xeb,
0x0f,
0x4b,
0x70,
0x56,
0x9d,
0x35
],
[
0x1e,
0x24,
0x0e,
0x5e,
0x63,
0x58,
0xd1,
0xa2,
0x25,
0x22,
0x7c,
0x3b,
0x01,
0x21,
0x78,
0x87
],
[
0xd4,
0x00,
0x46,
0x57,
0x9f,
0xd3,
0x27,
0x52,
0x4c,
0x36,
0x02,
0xe7,
0xa0,
0xc4,
0xc8,
0x9e
],
[
0xea,
0xbf,
0x8a,
0xd2,
0x40,
0xc7,
0x38,
0xb5,
0xa3,
0xf7,
0xf2,
0xce,
0xf9,
0x61,
0x15,
0xa1
],
[
0xe0,
0xae,
0x5d,
0xa4,
0x9b,
0x34,
0x1a,
0x55,
0xad,
0x93,
0x32,
0x30,
0xf5,
0x8c,
0xb1,
0xe3
],
[
0x1d,
0xf6,
0xe2,
0x2e,
0x82,
0x66,
0xca,
0x60,
0xc0,
0x29,
0x23,
0xab,
0x0d,
0x53,
0x4e,
0x6f
],
[
0xd5,
0xdb,
0x37,
0x45,
0xde,
0xfd,
0x8e,
0x2f,
0x03,
0xff,
0x6a,
0x72,
0x6d,
0x6c,
0x5b,
0x51
],
[
0x8d,
0x1b,
0xaf,
0x92,
0xbb,
0xdd,
0xbc,
0x7f,
0x11,
0xd9,
0x5c,
0x41,
0x1f,
0x10,
0x5a,
0xd8
],
[
0x0a,
0xc1,
0x31,
0x88,
0xa5,
0xcd,
0x7b,
0xbd,
0x2d,
0x74,
0xd0,
0x12,
0xb8,
0xe5,
0xb4,
0xb0
],
[
0x89,
0x69,
0x97,
0x4a,
0x0c,
0x96,
0x77,
0x7e,
0x65,
0xb9,
0xf1,
0x09,
0xc5,
0x6e,
0xc6,
0x84
],
[
0x18,
0xf0,
0x7d,
0xec,
0x3a,
0xdc,
0x4d,
0x20,
0x79,
0xee,
0x5f,
0x3e,
0xd7,
0xcb,
0x39,
0x48
]
]
/**
* 密钥扩展算法
* - FK: 系统参数
* - CK: 固定参数
*/
const FK = [0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc]
const CK = [
0x00070e15,
0x1c232a31,
0x383f464d,
0x545b6269,
0x70777e85,
0x8c939aa1,
0xa8afb6bd,
0xc4cbd2d9,
0xe0e7eef5,
0xfc030a11,
0x181f262d,
0x343b4249,
0x50575e65,
0x6c737a81,
0x888f969d,
0xa4abb2b9,
0xc0c7ced5,
0xdce3eaf1,
0xf8ff060d,
0x141b2229,
0x30373e45,
0x4c535a61,
0x686f767d,
0x848b9299,
0xa0a7aeb5,
0xbcc3cad1,
0xd8dfe6ed,
0xf4fb0209,
0x10171e25,
0x2c333a41,
0x484f565d,
0x646b7279
]
// 分组大小
const BLOCK_SIZE = 16 // 16 bytes
// 十六进制表示的加密密钥和初始化向量 iv
const REG_EXP_KEY = /^[0-9a-f]{32}$/i
// 非线性变换 τ(.)
const Tau = (a) => {
const b1 = SBOX_TABLE[(a & 0xf0000000) >>> 28][(a & 0x0f000000) >>> 24]
const b2 = SBOX_TABLE[(a & 0x00f00000) >>> 20][(a & 0x000f0000) >>> 16]
const b3 = SBOX_TABLE[(a & 0x0000f000) >>> 12][(a & 0x00000f00) >>> 8]
const b4 = SBOX_TABLE[(a & 0x000000f0) >>> 4][(a & 0x0000000f) >>> 0]
return (b1 << 24) | (b2 << 16) | (b3 << 8) | (b4 << 0)
}
// 线性变换 L(B) = B xor (B <<< 2) xor (B <<< 10) xor (B <<< 18) xor (B <<< 24)
const L = (B) =>
B ^ leftShift(B, 2) ^ leftShift(B, 10) ^ leftShift(B, 18) ^ leftShift(B, 24)
// 合成置换 T(A) = L(τ(A))
const T = (A) => L(Tau(A))
// 线性变换 L'(B) = B xor (B <<< 13) xor (B <<< 23)
const Li = (B) => B ^ leftShift(B, 13) ^ leftShift(B, 23)
// 合成置换 T'(A) = L'(τ(A))
const Ti = (A) => Li(Tau(A))
// 密钥扩展算法
const extendKeys = (MK) => {
const K = new Array(36)
K[0] = MK[0] ^ FK[0]
K[1] = MK[1] ^ FK[1]
K[2] = MK[2] ^ FK[2]
K[3] = MK[3] ^ FK[3]
const rk = new Array(32)
for (let i = 0; i < 32; i++) {
K[i + 4] = K[i] ^ Ti(K[i + 1] ^ K[i + 2] ^ K[i + 3] ^ CK[i])
rk[i] = K[i + 4]
}
return rk
}
// 分组加密
const encryptBlock = (X, MK) => {
const rk = extendKeys(MK)
for (let i = 0; i < 32; i++) {
X[i + 4] = X[i] ^ T(X[i + 1] ^ X[i + 2] ^ X[i + 3] ^ rk[i])
}
return [X[35], X[34], X[33], X[32]]
}
// 分组解密
const decryptBlock = (X, MK) => {
const rk = extendKeys(MK).reverse()
for (let i = 0; i < 32; i++) {
X[i + 4] = X[i] ^ T(X[i + 1] ^ X[i + 2] ^ X[i + 3] ^ rk[i])
}
return [X[35], X[34], X[33], X[32]]
}
// 分组填充 https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS#5_and_PKCS#7
const pkcs7Padding = (data) => {
const paddingSize = BLOCK_SIZE - (data.length % BLOCK_SIZE)
const paddingBuff = Buffer.alloc(paddingSize, paddingSize)
return Buffer.concat([data, paddingBuff], data.length + paddingSize)
}
// Block Buffer => Int32 Array
const toInt32Array = (block) => [
block.readInt32BE(0),
block.readInt32BE(4),
block.readInt32BE(8),
block.readInt32BE(12)
]
// Int32 Array => Block Buffer
const toCipcherBlock = (array) => {
const block = Buffer.alloc(16)
for (let i = 0; i < 4; i++) {
block.writeInt32BE(array[i], i * 4)
}
return block
}
const _encrypt = (data, key, iv, outputEncoding) => {
// 初始化向量转换
iv && (iv = toInt32Array(iv))
// 密钥转换
key = toInt32Array(key)
// 分组填充
data = pkcs7Padding(data)
// 分组加密结果
const blocks = []
// 分组数(每组 16 字节)
const num = data.length / BLOCK_SIZE
for (let i = 0; i < num; i++) {
if (iv) {
const offset = i * BLOCK_SIZE
const plainBlock = [
iv[0] ^ data.readInt32BE(offset),
iv[1] ^ data.readInt32BE(offset + 4),
iv[2] ^ data.readInt32BE(offset + 8),
iv[3] ^ data.readInt32BE(offset + 12)
]
const cipherBlock = encryptBlock(plainBlock, key)
blocks.push(toCipcherBlock(cipherBlock))
iv = cipherBlock.slice(0) // 将本次密文作为下一次加密的 iv
} else {
const offset = i * BLOCK_SIZE
const plainBlock = [
data.readInt32BE(offset),
data.readInt32BE(offset + 4),
data.readInt32BE(offset + 8),
data.readInt32BE(offset + 12)
]
const cipherBlock = encryptBlock(plainBlock, key)
blocks.push(toCipcherBlock(cipherBlock))
}
}
const buff = Buffer.concat(blocks, data.length)
return outputEncoding ? buff.toString(outputEncoding) : toArrayBuffer(buff)
}
const _decrypt = (data, key, iv, outputEncoding) => {
// 初始化向量转换
iv && (iv = toInt32Array(iv))
// 密钥转换
key = toInt32Array(key)
// 分组解密结果
const blocks = []
// 按每组 16 字节分组后得到的总分组数
const num = data.length / BLOCK_SIZE
if (iv) {
for (let i = num - 1; i >= 0; i--) {
const offset = i * BLOCK_SIZE
let vector
if (i > 0) {
vector = [
data.readInt32BE(offset - BLOCK_SIZE),
data.readInt32BE(offset - BLOCK_SIZE + 4),
data.readInt32BE(offset - BLOCK_SIZE + 8),
data.readInt32BE(offset - BLOCK_SIZE + 12)
]
} else {
vector = iv
}
const cipherBlock = [
data.readInt32BE(offset),
data.readInt32BE(offset + 4),
data.readInt32BE(offset + 8),
data.readInt32BE(offset + 12)
]
const [b0, b1, b2, b3] = decryptBlock(cipherBlock, key)
const plainBlock = [
b0 ^ vector[0],
b1 ^ vector[1],
b2 ^ vector[2],
b3 ^ vector[3]
]
blocks.unshift(toCipcherBlock(plainBlock))
}
} else {
for (let i = 0; i < num; i++) {
const offset = i * BLOCK_SIZE
const cipherBlock = [
data.readInt32BE(offset),
data.readInt32BE(offset + 4),
data.readInt32BE(offset + 8),
data.readInt32BE(offset + 12)
]
const plainBlock = decryptBlock(cipherBlock, key)
blocks.push(toCipcherBlock(plainBlock))
}
}
// 移除分组填充
const buff = Buffer.concat(
blocks,
data.length - blocks[blocks.length - 1][BLOCK_SIZE - 1]
)
return outputEncoding ? buff.toString(outputEncoding) : toArrayBuffer(buff)
}
export const encrypt = (data, key, options) => {
let { mode, iv, inputEncoding, outputEncoding } = options || {}
// 输入参数校验 `string` | `ArrayBuffer` | `Buffer`
if (typeof data === 'string') {
data = Buffer.from(data, inputEncoding || 'utf8')
} else if (data instanceof ArrayBuffer) {
data = Buffer.from(data)
}
if (!Buffer.isBuffer(data)) {
throw new TypeError(
`Expected "string" | "Buffer" | "ArrayBuffer" but received "${Object.prototype.toString.call(
data
)}"`
)
}
// 十六进制表示的密钥
if (!REG_EXP_KEY.test(key)) {
throw new TypeError('Invalid value of cipher `key`')
}
key = Buffer.from(key, 'hex')
// CBC 分组必须制定 iv
if (mode === CBC && !REG_EXP_KEY.test(iv)) {
throw new TypeError('Invalid value of `iv` option')
}
iv = mode === CBC ? Buffer.from(iv, 'hex') : null
return _encrypt(data, key, iv, outputEncoding)
}
export const decrypt = (data, key, options) => {
let { mode, iv, inputEncoding, outputEncoding } = options || {}
// 输入参数校验 `string` | `ArrayBuffer` | `Buffer`
if (typeof data === 'string') {
data = Buffer.from(data, inputEncoding)
} else if (data instanceof ArrayBuffer) {
data = Buffer.from(data)
}
if (!Buffer.isBuffer(data)) {
throw new TypeError(
`Expected "string" | "Buffer" | "ArrayBuffer" but received "${Object.prototype.toString.call(
data
)}"`
)
}
// 十六进制表示的密钥
if (!REG_EXP_KEY.test(key)) {
throw new TypeError('Invalid value of cipher `key`')
}
key = Buffer.from(key, 'hex')
// CBC 分组必须制定 iv
if (mode === CBC && !REG_EXP_KEY.test(iv)) {
throw new TypeError('Invalid value of `iv` option')
}
iv = mode === CBC ? Buffer.from(iv, 'hex') : null
return _decrypt(data, key, iv, outputEncoding)
}

View File

@@ -0,0 +1,11 @@
// 32 位整数无符号循环左移
export const leftShift = (a, n) => {
n = n % 32
return (a << n) | (a >>> (32 - n))
}
// 补全 16 进制字符串
export const leftPad = (str, num) => {
const padding = num - str.length
return (padding > 0 ? '0'.repeat(padding) : '') + str
}