1
This commit is contained in:
415
nx/utils/gm-crypto/lib/sm2/ec.js
Normal file
415
nx/utils/gm-crypto/lib/sm2/ec.js
Normal file
@@ -0,0 +1,415 @@
|
||||
// Basic Javascript Elliptic Curve implementation
|
||||
// Ported loosely from BouncyCastle's Java EC code
|
||||
// Only Fp curves implemented for now
|
||||
|
||||
// Requires jsbn.js and jsbn2.js
|
||||
import { BigInteger } from 'jsbn'
|
||||
const { Barrett } = BigInteger.prototype
|
||||
|
||||
// Basic Javascript Elliptic Curve implementation
|
||||
// Ported loosely from BouncyCastle's Java EC code
|
||||
// Only Fp curves implemented for now
|
||||
|
||||
// Requires jsbn.js and jsbn2.js
|
||||
|
||||
// ----------------
|
||||
// ECFieldElementFp
|
||||
|
||||
// constructor
|
||||
function ECFieldElementFp(q, x) {
|
||||
this.x = x
|
||||
// TODO if(x.compareTo(q) >= 0) error
|
||||
this.q = q
|
||||
}
|
||||
|
||||
function feFpEquals(other) {
|
||||
if (other == this) return true
|
||||
return this.q.equals(other.q) && this.x.equals(other.x)
|
||||
}
|
||||
|
||||
function feFpToBigInteger() {
|
||||
return this.x
|
||||
}
|
||||
|
||||
function feFpNegate() {
|
||||
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q))
|
||||
}
|
||||
|
||||
function feFpAdd(b) {
|
||||
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q))
|
||||
}
|
||||
|
||||
function feFpSubtract(b) {
|
||||
return new ECFieldElementFp(
|
||||
this.q,
|
||||
this.x.subtract(b.toBigInteger()).mod(this.q)
|
||||
)
|
||||
}
|
||||
|
||||
function feFpMultiply(b) {
|
||||
return new ECFieldElementFp(
|
||||
this.q,
|
||||
this.x.multiply(b.toBigInteger()).mod(this.q)
|
||||
)
|
||||
}
|
||||
|
||||
function feFpSquare() {
|
||||
return new ECFieldElementFp(this.q, this.x.square().mod(this.q))
|
||||
}
|
||||
|
||||
function feFpDivide(b) {
|
||||
return new ECFieldElementFp(
|
||||
this.q,
|
||||
this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)
|
||||
)
|
||||
}
|
||||
|
||||
ECFieldElementFp.prototype.equals = feFpEquals
|
||||
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger
|
||||
ECFieldElementFp.prototype.negate = feFpNegate
|
||||
ECFieldElementFp.prototype.add = feFpAdd
|
||||
ECFieldElementFp.prototype.subtract = feFpSubtract
|
||||
ECFieldElementFp.prototype.multiply = feFpMultiply
|
||||
ECFieldElementFp.prototype.square = feFpSquare
|
||||
ECFieldElementFp.prototype.divide = feFpDivide
|
||||
|
||||
// ----------------
|
||||
// ECPointFp
|
||||
|
||||
// constructor
|
||||
export function ECPointFp(curve, x, y, z) {
|
||||
this.curve = curve
|
||||
this.x = x
|
||||
this.y = y
|
||||
// Projective coordinates: either zinv == null or z * zinv == 1
|
||||
// z and zinv are just BigIntegers, not fieldElements
|
||||
if (z == null) {
|
||||
this.z = BigInteger.ONE
|
||||
} else {
|
||||
this.z = z
|
||||
}
|
||||
this.zinv = null
|
||||
//TODO: compression flag
|
||||
}
|
||||
|
||||
function pointFpGetX() {
|
||||
if (this.zinv == null) {
|
||||
this.zinv = this.z.modInverse(this.curve.q)
|
||||
}
|
||||
var r = this.x.toBigInteger().multiply(this.zinv)
|
||||
this.curve.reduce(r)
|
||||
return this.curve.fromBigInteger(r)
|
||||
}
|
||||
|
||||
function pointFpGetY() {
|
||||
if (this.zinv == null) {
|
||||
this.zinv = this.z.modInverse(this.curve.q)
|
||||
}
|
||||
var r = this.y.toBigInteger().multiply(this.zinv)
|
||||
this.curve.reduce(r)
|
||||
return this.curve.fromBigInteger(r)
|
||||
}
|
||||
|
||||
function pointFpEquals(other) {
|
||||
if (other == this) return true
|
||||
if (this.isInfinity()) return other.isInfinity()
|
||||
if (other.isInfinity()) return this.isInfinity()
|
||||
var u, v
|
||||
// u = Y2 * Z1 - Y1 * Z2
|
||||
u = other.y
|
||||
.toBigInteger()
|
||||
.multiply(this.z)
|
||||
.subtract(this.y.toBigInteger().multiply(other.z))
|
||||
.mod(this.curve.q)
|
||||
if (!u.equals(BigInteger.ZERO)) return false
|
||||
// v = X2 * Z1 - X1 * Z2
|
||||
v = other.x
|
||||
.toBigInteger()
|
||||
.multiply(this.z)
|
||||
.subtract(this.x.toBigInteger().multiply(other.z))
|
||||
.mod(this.curve.q)
|
||||
return v.equals(BigInteger.ZERO)
|
||||
}
|
||||
|
||||
function pointFpIsInfinity() {
|
||||
if (this.x == null && this.y == null) return true
|
||||
return (
|
||||
this.z.equals(BigInteger.ZERO) &&
|
||||
!this.y.toBigInteger().equals(BigInteger.ZERO)
|
||||
)
|
||||
}
|
||||
|
||||
function pointFpNegate() {
|
||||
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z)
|
||||
}
|
||||
|
||||
function pointFpAdd(b) {
|
||||
if (this.isInfinity()) return b
|
||||
if (b.isInfinity()) return this
|
||||
|
||||
// u = Y2 * Z1 - Y1 * Z2
|
||||
var u = b.y
|
||||
.toBigInteger()
|
||||
.multiply(this.z)
|
||||
.subtract(this.y.toBigInteger().multiply(b.z))
|
||||
.mod(this.curve.q)
|
||||
// v = X2 * Z1 - X1 * Z2
|
||||
var v = b.x
|
||||
.toBigInteger()
|
||||
.multiply(this.z)
|
||||
.subtract(this.x.toBigInteger().multiply(b.z))
|
||||
.mod(this.curve.q)
|
||||
|
||||
if (BigInteger.ZERO.equals(v)) {
|
||||
if (BigInteger.ZERO.equals(u)) {
|
||||
return this.twice() // this == b, so double
|
||||
}
|
||||
return this.curve.getInfinity() // this = -b, so infinity
|
||||
}
|
||||
|
||||
var THREE = new BigInteger('3')
|
||||
var x1 = this.x.toBigInteger()
|
||||
var y1 = this.y.toBigInteger()
|
||||
var x2 = b.x.toBigInteger()
|
||||
var y2 = b.y.toBigInteger()
|
||||
|
||||
var v2 = v.square()
|
||||
var v3 = v2.multiply(v)
|
||||
var x1v2 = x1.multiply(v2)
|
||||
var zu2 = u.square().multiply(this.z)
|
||||
|
||||
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
|
||||
var x3 = zu2
|
||||
.subtract(x1v2.shiftLeft(1))
|
||||
.multiply(b.z)
|
||||
.subtract(v3)
|
||||
.multiply(v)
|
||||
.mod(this.curve.q)
|
||||
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
|
||||
var y3 = x1v2
|
||||
.multiply(THREE)
|
||||
.multiply(u)
|
||||
.subtract(y1.multiply(v3))
|
||||
.subtract(zu2.multiply(u))
|
||||
.multiply(b.z)
|
||||
.add(u.multiply(v3))
|
||||
.mod(this.curve.q)
|
||||
// z3 = v^3 * z1 * z2
|
||||
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q)
|
||||
|
||||
return new ECPointFp(
|
||||
this.curve,
|
||||
this.curve.fromBigInteger(x3),
|
||||
this.curve.fromBigInteger(y3),
|
||||
z3
|
||||
)
|
||||
}
|
||||
|
||||
function pointFpTwice() {
|
||||
if (this.isInfinity()) return this
|
||||
if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity()
|
||||
|
||||
// TODO: optimized handling of constants
|
||||
var THREE = new BigInteger('3')
|
||||
var x1 = this.x.toBigInteger()
|
||||
var y1 = this.y.toBigInteger()
|
||||
|
||||
var y1z1 = y1.multiply(this.z)
|
||||
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q)
|
||||
var a = this.curve.a.toBigInteger()
|
||||
|
||||
// w = 3 * x1^2 + a * z1^2
|
||||
var w = x1.square().multiply(THREE)
|
||||
if (!BigInteger.ZERO.equals(a)) {
|
||||
w = w.add(this.z.square().multiply(a))
|
||||
}
|
||||
w = w.mod(this.curve.q)
|
||||
//this.curve.reduce(w);
|
||||
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
|
||||
var x3 = w
|
||||
.square()
|
||||
.subtract(x1.shiftLeft(3).multiply(y1sqz1))
|
||||
.shiftLeft(1)
|
||||
.multiply(y1z1)
|
||||
.mod(this.curve.q)
|
||||
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
|
||||
var y3 = w
|
||||
.multiply(THREE)
|
||||
.multiply(x1)
|
||||
.subtract(y1sqz1.shiftLeft(1))
|
||||
.shiftLeft(2)
|
||||
.multiply(y1sqz1)
|
||||
.subtract(w.square().multiply(w))
|
||||
.mod(this.curve.q)
|
||||
// z3 = 8 * (y1 * z1)^3
|
||||
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q)
|
||||
|
||||
return new ECPointFp(
|
||||
this.curve,
|
||||
this.curve.fromBigInteger(x3),
|
||||
this.curve.fromBigInteger(y3),
|
||||
z3
|
||||
)
|
||||
}
|
||||
|
||||
// Simple NAF (Non-Adjacent Form) multiplication algorithm
|
||||
// TODO: modularize the multiplication algorithm
|
||||
function pointFpMultiply(k) {
|
||||
if (this.isInfinity()) return this
|
||||
if (k.signum() == 0) return this.curve.getInfinity()
|
||||
|
||||
var e = k
|
||||
var h = e.multiply(new BigInteger('3'))
|
||||
|
||||
var neg = this.negate()
|
||||
var R = this
|
||||
|
||||
var i
|
||||
for (i = h.bitLength() - 2; i > 0; --i) {
|
||||
R = R.twice()
|
||||
|
||||
var hBit = h.testBit(i)
|
||||
var eBit = e.testBit(i)
|
||||
|
||||
if (hBit != eBit) {
|
||||
R = R.add(hBit ? this : neg)
|
||||
}
|
||||
}
|
||||
|
||||
return R
|
||||
}
|
||||
|
||||
// Compute this*j + x*k (simultaneous multiplication)
|
||||
function pointFpMultiplyTwo(j, x, k) {
|
||||
var i
|
||||
if (j.bitLength() > k.bitLength()) i = j.bitLength() - 1
|
||||
else i = k.bitLength() - 1
|
||||
|
||||
var R = this.curve.getInfinity()
|
||||
var both = this.add(x)
|
||||
while (i >= 0) {
|
||||
R = R.twice()
|
||||
if (j.testBit(i)) {
|
||||
if (k.testBit(i)) {
|
||||
R = R.add(both)
|
||||
} else {
|
||||
R = R.add(this)
|
||||
}
|
||||
} else {
|
||||
if (k.testBit(i)) {
|
||||
R = R.add(x)
|
||||
}
|
||||
}
|
||||
--i
|
||||
}
|
||||
|
||||
return R
|
||||
}
|
||||
|
||||
ECPointFp.prototype.getX = pointFpGetX
|
||||
ECPointFp.prototype.getY = pointFpGetY
|
||||
ECPointFp.prototype.equals = pointFpEquals
|
||||
ECPointFp.prototype.isInfinity = pointFpIsInfinity
|
||||
ECPointFp.prototype.negate = pointFpNegate
|
||||
ECPointFp.prototype.add = pointFpAdd
|
||||
ECPointFp.prototype.twice = pointFpTwice
|
||||
ECPointFp.prototype.multiply = pointFpMultiply
|
||||
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo
|
||||
|
||||
// ----------------
|
||||
// ECCurveFp
|
||||
|
||||
// constructor
|
||||
export function ECCurveFp(q, a, b) {
|
||||
this.q = q
|
||||
this.a = this.fromBigInteger(a)
|
||||
this.b = this.fromBigInteger(b)
|
||||
this.infinity = new ECPointFp(this, null, null)
|
||||
this.reducer = new Barrett(this.q)
|
||||
}
|
||||
|
||||
function curveFpGetQ() {
|
||||
return this.q
|
||||
}
|
||||
|
||||
function curveFpGetA() {
|
||||
return this.a
|
||||
}
|
||||
|
||||
function curveFpGetB() {
|
||||
return this.b
|
||||
}
|
||||
|
||||
function curveFpEquals(other) {
|
||||
if (other == this) return true
|
||||
return (
|
||||
this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b)
|
||||
)
|
||||
}
|
||||
|
||||
function curveFpGetInfinity() {
|
||||
return this.infinity
|
||||
}
|
||||
|
||||
function curveFpFromBigInteger(x) {
|
||||
return new ECFieldElementFp(this.q, x)
|
||||
}
|
||||
|
||||
function curveReduce(x) {
|
||||
this.reducer.reduce(x)
|
||||
}
|
||||
|
||||
// for now, work with hex strings because they're easier in JS
|
||||
function curveFpDecodePointHex(s) {
|
||||
switch (
|
||||
parseInt(s.substr(0, 2), 16) // first byte
|
||||
) {
|
||||
case 0:
|
||||
return this.infinity
|
||||
case 2:
|
||||
case 3:
|
||||
// point compression not supported yet
|
||||
return null
|
||||
case 4:
|
||||
case 6:
|
||||
case 7:
|
||||
var len = (s.length - 2) / 2
|
||||
var xHex = s.substr(2, len)
|
||||
var yHex = s.substr(len + 2, len)
|
||||
|
||||
return new ECPointFp(
|
||||
this,
|
||||
this.fromBigInteger(new BigInteger(xHex, 16)),
|
||||
this.fromBigInteger(new BigInteger(yHex, 16))
|
||||
)
|
||||
|
||||
default:
|
||||
// unsupported
|
||||
return null
|
||||
}
|
||||
}
|
||||
|
||||
function curveFpEncodePointHex(p) {
|
||||
if (p.isInfinity()) return '00'
|
||||
var xHex = p.getX().toBigInteger().toString(16)
|
||||
var yHex = p.getY().toBigInteger().toString(16)
|
||||
var oLen = this.getQ().toString(16).length
|
||||
if (oLen % 2 != 0) oLen++
|
||||
while (xHex.length < oLen) {
|
||||
xHex = '0' + xHex
|
||||
}
|
||||
while (yHex.length < oLen) {
|
||||
yHex = '0' + yHex
|
||||
}
|
||||
return '04' + xHex + yHex
|
||||
}
|
||||
|
||||
ECCurveFp.prototype.getQ = curveFpGetQ
|
||||
ECCurveFp.prototype.getA = curveFpGetA
|
||||
ECCurveFp.prototype.getB = curveFpGetB
|
||||
ECCurveFp.prototype.equals = curveFpEquals
|
||||
ECCurveFp.prototype.getInfinity = curveFpGetInfinity
|
||||
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger
|
||||
ECCurveFp.prototype.reduce = curveReduce
|
||||
ECCurveFp.prototype.decodePointHex = curveFpDecodePointHex
|
||||
ECCurveFp.prototype.encodePointHex = curveFpEncodePointHex
|
||||
Reference in New Issue
Block a user