feat:node-modules

This commit is contained in:
houjunxiang
2025-11-24 10:26:18 +08:00
parent 753766893b
commit 8a3e48d856
8825 changed files with 567399 additions and 1 deletions

View File

@@ -0,0 +1,163 @@
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createLsolve = void 0;
var _factory = require("../../../utils/factory.js");
var _solveValidation = require("./utils/solveValidation.js");
const name = 'lsolve';
const dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix'];
const createLsolve = exports.createLsolve = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
matrix,
divideScalar,
multiplyScalar,
subtractScalar,
equalScalar,
DenseMatrix
} = _ref;
const solveValidation = (0, _solveValidation.createSolveValidation)({
DenseMatrix
});
/**
* Finds one solution of a linear equation system by forwards substitution. Matrix must be a lower triangular matrix. Throws an error if there's no solution.
*
* `L * x = b`
*
* Syntax:
*
* math.lsolve(L, b)
*
* Examples:
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = lsolve(a, b) // [[-5.5], [20]]
*
* See also:
*
* lsolveAll, lup, slu, usolve, lusolve
*
* @param {Matrix, Array} L A N x N matrix or array (L)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
*/
return typed(name, {
'SparseMatrix, Array | Matrix': function (m, b) {
return _sparseForwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function (m, b) {
return _denseForwardSubstitution(m, b);
},
'Array, Array | Matrix': function (a, b) {
const m = matrix(a);
const r = _denseForwardSubstitution(m, b);
return r.valueOf();
}
});
function _denseForwardSubstitution(m, b) {
// validate matrix and vector, return copy of column vector b
b = solveValidation(m, b, true);
const bdata = b._data;
const rows = m._size[0];
const columns = m._size[1];
// result
const x = [];
const mdata = m._data;
// loop columns
for (let j = 0; j < columns; j++) {
const bj = bdata[j][0] || 0;
let xj;
if (!equalScalar(bj, 0)) {
// non-degenerate row, find solution
const vjj = mdata[j][j];
if (equalScalar(vjj, 0)) {
throw new Error('Linear system cannot be solved since matrix is singular');
}
xj = divideScalar(bj, vjj);
// loop rows
for (let i = j + 1; i < rows; i++) {
bdata[i] = [subtractScalar(bdata[i][0] || 0, multiplyScalar(xj, mdata[i][j]))];
}
} else {
// degenerate row, we can choose any value
xj = 0;
}
x[j] = [xj];
}
return new DenseMatrix({
data: x,
size: [rows, 1]
});
}
function _sparseForwardSubstitution(m, b) {
// validate matrix and vector, return copy of column vector b
b = solveValidation(m, b, true);
const bdata = b._data;
const rows = m._size[0];
const columns = m._size[1];
const values = m._values;
const index = m._index;
const ptr = m._ptr;
// result
const x = [];
// loop columns
for (let j = 0; j < columns; j++) {
const bj = bdata[j][0] || 0;
if (!equalScalar(bj, 0)) {
// non-degenerate row, find solution
let vjj = 0;
// matrix values & indices (column j)
const jValues = [];
const jIndices = [];
// first and last index in the column
const firstIndex = ptr[j];
const lastIndex = ptr[j + 1];
// values in column, find value at [j, j]
for (let k = firstIndex; k < lastIndex; k++) {
const i = index[k];
// check row (rows are not sorted!)
if (i === j) {
vjj = values[k];
} else if (i > j) {
// store lower triangular
jValues.push(values[k]);
jIndices.push(i);
}
}
// at this point we must have a value in vjj
if (equalScalar(vjj, 0)) {
throw new Error('Linear system cannot be solved since matrix is singular');
}
const xj = divideScalar(bj, vjj);
for (let k = 0, l = jIndices.length; k < l; k++) {
const i = jIndices[k];
bdata[i] = [subtractScalar(bdata[i][0] || 0, multiplyScalar(xj, jValues[k]))];
}
x[j] = [xj];
} else {
// degenerate row, we can choose any value
x[j] = [0];
}
}
return new DenseMatrix({
data: x,
size: [rows, 1]
});
}
});

View File

@@ -0,0 +1,192 @@
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createLsolveAll = void 0;
var _factory = require("../../../utils/factory.js");
var _solveValidation = require("./utils/solveValidation.js");
const name = 'lsolveAll';
const dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix'];
const createLsolveAll = exports.createLsolveAll = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
matrix,
divideScalar,
multiplyScalar,
subtractScalar,
equalScalar,
DenseMatrix
} = _ref;
const solveValidation = (0, _solveValidation.createSolveValidation)({
DenseMatrix
});
/**
* Finds all solutions of a linear equation system by forwards substitution. Matrix must be a lower triangular matrix.
*
* `L * x = b`
*
* Syntax:
*
* math.lsolveAll(L, b)
*
* Examples:
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = lsolveAll(a, b) // [ [[-5.5], [20]] ]
*
* See also:
*
* lsolve, lup, slu, usolve, lusolve
*
* @param {Matrix, Array} L A N x N matrix or array (L)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix[] | Array[]} An array of affine-independent column vectors (x) that solve the linear system
*/
return typed(name, {
'SparseMatrix, Array | Matrix': function (m, b) {
return _sparseForwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function (m, b) {
return _denseForwardSubstitution(m, b);
},
'Array, Array | Matrix': function (a, b) {
const m = matrix(a);
const R = _denseForwardSubstitution(m, b);
return R.map(r => r.valueOf());
}
});
function _denseForwardSubstitution(m, b_) {
// the algorithm is derived from
// https://www.overleaf.com/read/csvgqdxggyjv
// array of right-hand sides
const B = [solveValidation(m, b_, true)._data.map(e => e[0])];
const M = m._data;
const rows = m._size[0];
const columns = m._size[1];
// loop columns
for (let i = 0; i < columns; i++) {
let L = B.length;
// loop right-hand sides
for (let k = 0; k < L; k++) {
const b = B[k];
if (!equalScalar(M[i][i], 0)) {
// non-singular row
b[i] = divideScalar(b[i], M[i][i]);
for (let j = i + 1; j < columns; j++) {
// b[j] -= b[i] * M[j,i]
b[j] = subtractScalar(b[j], multiplyScalar(b[i], M[j][i]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
const bNew = [...b];
bNew[i] = 1;
for (let j = i + 1; j < columns; j++) {
bNew[j] = subtractScalar(bNew[j], M[j][i]);
}
B.push(bNew);
}
}
}
return B.map(x => new DenseMatrix({
data: x.map(e => [e]),
size: [rows, 1]
}));
}
function _sparseForwardSubstitution(m, b_) {
// array of right-hand sides
const B = [solveValidation(m, b_, true)._data.map(e => e[0])];
const rows = m._size[0];
const columns = m._size[1];
const values = m._values;
const index = m._index;
const ptr = m._ptr;
// loop columns
for (let i = 0; i < columns; i++) {
let L = B.length;
// loop right-hand sides
for (let k = 0; k < L; k++) {
const b = B[k];
// values & indices (column i)
const iValues = [];
const iIndices = [];
// first & last indeces in column
const firstIndex = ptr[i];
const lastIndex = ptr[i + 1];
// find the value at [i, i]
let Mii = 0;
for (let j = firstIndex; j < lastIndex; j++) {
const J = index[j];
// check row
if (J === i) {
Mii = values[j];
} else if (J > i) {
// store lower triangular
iValues.push(values[j]);
iIndices.push(J);
}
}
if (!equalScalar(Mii, 0)) {
// non-singular row
b[i] = divideScalar(b[i], Mii);
for (let j = 0, lastIndex = iIndices.length; j < lastIndex; j++) {
const J = iIndices[j];
b[J] = subtractScalar(b[J], multiplyScalar(b[i], iValues[j]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
const bNew = [...b];
bNew[i] = 1;
for (let j = 0, lastIndex = iIndices.length; j < lastIndex; j++) {
const J = iIndices[j];
bNew[J] = subtractScalar(bNew[J], iValues[j]);
}
B.push(bNew);
}
}
}
return B.map(x => new DenseMatrix({
data: x.map(e => [e]),
size: [rows, 1]
}));
}
});

View File

@@ -0,0 +1,114 @@
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createLusolve = void 0;
var _is = require("../../../utils/is.js");
var _factory = require("../../../utils/factory.js");
var _solveValidation = require("./utils/solveValidation.js");
var _csIpvec = require("../sparse/csIpvec.js");
const name = 'lusolve';
const dependencies = ['typed', 'matrix', 'lup', 'slu', 'usolve', 'lsolve', 'DenseMatrix'];
const createLusolve = exports.createLusolve = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
matrix,
lup,
slu,
usolve,
lsolve,
DenseMatrix
} = _ref;
const solveValidation = (0, _solveValidation.createSolveValidation)({
DenseMatrix
});
/**
* Solves the linear system `A * x = b` where `A` is an [n x n] matrix and `b` is a [n] column vector.
*
* Syntax:
*
* math.lusolve(A, b) // returns column vector with the solution to the linear system A * x = b
* math.lusolve(lup, b) // returns column vector with the solution to the linear system A * x = b, lup = math.lup(A)
*
* Examples:
*
* const m = [[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]
*
* const x = math.lusolve(m, [-1, -1, -1, -1]) // x = [[-1], [-0.5], [-1/3], [-0.25]]
*
* const f = math.lup(m)
* const x1 = math.lusolve(f, [-1, -1, -1, -1]) // x1 = [[-1], [-0.5], [-1/3], [-0.25]]
* const x2 = math.lusolve(f, [1, 2, 1, -1]) // x2 = [[1], [1], [1/3], [-0.25]]
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = math.lusolve(a, b) // [[2], [5]]
*
* See also:
*
* lup, slu, lsolve, usolve
*
* @param {Matrix | Array | Object} A Invertible Matrix or the Matrix LU decomposition
* @param {Matrix | Array} b Column Vector
* @param {number} [order] The Symbolic Ordering and Analysis order, see slu for details. Matrix must be a SparseMatrix
* @param {Number} [threshold] Partial pivoting threshold (1 for partial pivoting), see slu for details. Matrix must be a SparseMatrix.
*
* @return {DenseMatrix | Array} Column vector with the solution to the linear system A * x = b
*/
return typed(name, {
'Array, Array | Matrix': function (a, b) {
a = matrix(a);
const d = lup(a);
const x = _lusolve(d.L, d.U, d.p, null, b);
return x.valueOf();
},
'DenseMatrix, Array | Matrix': function (a, b) {
const d = lup(a);
return _lusolve(d.L, d.U, d.p, null, b);
},
'SparseMatrix, Array | Matrix': function (a, b) {
const d = lup(a);
return _lusolve(d.L, d.U, d.p, null, b);
},
'SparseMatrix, Array | Matrix, number, number': function (a, b, order, threshold) {
const d = slu(a, order, threshold);
return _lusolve(d.L, d.U, d.p, d.q, b);
},
'Object, Array | Matrix': function (d, b) {
return _lusolve(d.L, d.U, d.p, d.q, b);
}
});
function _toMatrix(a) {
if ((0, _is.isMatrix)(a)) {
return a;
}
if ((0, _is.isArray)(a)) {
return matrix(a);
}
throw new TypeError('Invalid Matrix LU decomposition');
}
function _lusolve(l, u, p, q, b) {
// verify decomposition
l = _toMatrix(l);
u = _toMatrix(u);
// apply row permutations if needed (b is a DenseMatrix)
if (p) {
b = solveValidation(l, b, true);
b._data = (0, _csIpvec.csIpvec)(p, b._data);
}
// use forward substitution to resolve L * y = b
const y = lsolve(l, b);
// use backward substitution to resolve U * x = y
const x = usolve(u, y);
// apply column permutations if needed (x is a DenseMatrix)
if (q) {
x._data = (0, _csIpvec.csIpvec)(q, x._data);
}
return x;
}
});

View File

@@ -0,0 +1,167 @@
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createUsolve = void 0;
var _factory = require("../../../utils/factory.js");
var _solveValidation = require("./utils/solveValidation.js");
const name = 'usolve';
const dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix'];
const createUsolve = exports.createUsolve = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
matrix,
divideScalar,
multiplyScalar,
subtractScalar,
equalScalar,
DenseMatrix
} = _ref;
const solveValidation = (0, _solveValidation.createSolveValidation)({
DenseMatrix
});
/**
* Finds one solution of a linear equation system by backward substitution. Matrix must be an upper triangular matrix. Throws an error if there's no solution.
*
* `U * x = b`
*
* Syntax:
*
* math.usolve(U, b)
*
* Examples:
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = usolve(a, b) // [[8], [9]]
*
* See also:
*
* usolveAll, lup, slu, usolve, lusolve
*
* @param {Matrix, Array} U A N x N matrix or array (U)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
*/
return typed(name, {
'SparseMatrix, Array | Matrix': function (m, b) {
return _sparseBackwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function (m, b) {
return _denseBackwardSubstitution(m, b);
},
'Array, Array | Matrix': function (a, b) {
const m = matrix(a);
const r = _denseBackwardSubstitution(m, b);
return r.valueOf();
}
});
function _denseBackwardSubstitution(m, b) {
// make b into a column vector
b = solveValidation(m, b, true);
const bdata = b._data;
const rows = m._size[0];
const columns = m._size[1];
// result
const x = [];
const mdata = m._data;
// loop columns backwards
for (let j = columns - 1; j >= 0; j--) {
// b[j]
const bj = bdata[j][0] || 0;
// x[j]
let xj;
if (!equalScalar(bj, 0)) {
// value at [j, j]
const vjj = mdata[j][j];
if (equalScalar(vjj, 0)) {
// system cannot be solved
throw new Error('Linear system cannot be solved since matrix is singular');
}
xj = divideScalar(bj, vjj);
// loop rows
for (let i = j - 1; i >= 0; i--) {
// update copy of b
bdata[i] = [subtractScalar(bdata[i][0] || 0, multiplyScalar(xj, mdata[i][j]))];
}
} else {
// zero value at j
xj = 0;
}
// update x
x[j] = [xj];
}
return new DenseMatrix({
data: x,
size: [rows, 1]
});
}
function _sparseBackwardSubstitution(m, b) {
// make b into a column vector
b = solveValidation(m, b, true);
const bdata = b._data;
const rows = m._size[0];
const columns = m._size[1];
const values = m._values;
const index = m._index;
const ptr = m._ptr;
// result
const x = [];
// loop columns backwards
for (let j = columns - 1; j >= 0; j--) {
const bj = bdata[j][0] || 0;
if (!equalScalar(bj, 0)) {
// non-degenerate row, find solution
let vjj = 0;
// upper triangular matrix values & index (column j)
const jValues = [];
const jIndices = [];
// first & last indeces in column
const firstIndex = ptr[j];
const lastIndex = ptr[j + 1];
// values in column, find value at [j, j], loop backwards
for (let k = lastIndex - 1; k >= firstIndex; k--) {
const i = index[k];
// check row (rows are not sorted!)
if (i === j) {
vjj = values[k];
} else if (i < j) {
// store upper triangular
jValues.push(values[k]);
jIndices.push(i);
}
}
// at this point we must have a value in vjj
if (equalScalar(vjj, 0)) {
throw new Error('Linear system cannot be solved since matrix is singular');
}
const xj = divideScalar(bj, vjj);
for (let k = 0, lastIndex = jIndices.length; k < lastIndex; k++) {
const i = jIndices[k];
bdata[i] = [subtractScalar(bdata[i][0], multiplyScalar(xj, jValues[k]))];
}
x[j] = [xj];
} else {
// degenerate row, we can choose any value
x[j] = [0];
}
}
return new DenseMatrix({
data: x,
size: [rows, 1]
});
}
});

View File

@@ -0,0 +1,196 @@
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createUsolveAll = void 0;
var _factory = require("../../../utils/factory.js");
var _solveValidation = require("./utils/solveValidation.js");
const name = 'usolveAll';
const dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix'];
const createUsolveAll = exports.createUsolveAll = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
matrix,
divideScalar,
multiplyScalar,
subtractScalar,
equalScalar,
DenseMatrix
} = _ref;
const solveValidation = (0, _solveValidation.createSolveValidation)({
DenseMatrix
});
/**
* Finds all solutions of a linear equation system by backward substitution. Matrix must be an upper triangular matrix.
*
* `U * x = b`
*
* Syntax:
*
* math.usolveAll(U, b)
*
* Examples:
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = usolveAll(a, b) // [ [[8], [9]] ]
*
* See also:
*
* usolve, lup, slu, usolve, lusolve
*
* @param {Matrix, Array} U A N x N matrix or array (U)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix[] | Array[]} An array of affine-independent column vectors (x) that solve the linear system
*/
return typed(name, {
'SparseMatrix, Array | Matrix': function (m, b) {
return _sparseBackwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function (m, b) {
return _denseBackwardSubstitution(m, b);
},
'Array, Array | Matrix': function (a, b) {
const m = matrix(a);
const R = _denseBackwardSubstitution(m, b);
return R.map(r => r.valueOf());
}
});
function _denseBackwardSubstitution(m, b_) {
// the algorithm is derived from
// https://www.overleaf.com/read/csvgqdxggyjv
// array of right-hand sides
const B = [solveValidation(m, b_, true)._data.map(e => e[0])];
const M = m._data;
const rows = m._size[0];
const columns = m._size[1];
// loop columns backwards
for (let i = columns - 1; i >= 0; i--) {
let L = B.length;
// loop right-hand sides
for (let k = 0; k < L; k++) {
const b = B[k];
if (!equalScalar(M[i][i], 0)) {
// non-singular row
b[i] = divideScalar(b[i], M[i][i]);
for (let j = i - 1; j >= 0; j--) {
// b[j] -= b[i] * M[j,i]
b[j] = subtractScalar(b[j], multiplyScalar(b[i], M[j][i]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
const bNew = [...b];
bNew[i] = 1;
for (let j = i - 1; j >= 0; j--) {
bNew[j] = subtractScalar(bNew[j], M[j][i]);
}
B.push(bNew);
}
}
}
return B.map(x => new DenseMatrix({
data: x.map(e => [e]),
size: [rows, 1]
}));
}
function _sparseBackwardSubstitution(m, b_) {
// array of right-hand sides
const B = [solveValidation(m, b_, true)._data.map(e => e[0])];
const rows = m._size[0];
const columns = m._size[1];
const values = m._values;
const index = m._index;
const ptr = m._ptr;
// loop columns backwards
for (let i = columns - 1; i >= 0; i--) {
let L = B.length;
// loop right-hand sides
for (let k = 0; k < L; k++) {
const b = B[k];
// values & indices (column i)
const iValues = [];
const iIndices = [];
// first & last indeces in column
const firstIndex = ptr[i];
const lastIndex = ptr[i + 1];
// find the value at [i, i]
let Mii = 0;
for (let j = lastIndex - 1; j >= firstIndex; j--) {
const J = index[j];
// check row
if (J === i) {
Mii = values[j];
} else if (J < i) {
// store upper triangular
iValues.push(values[j]);
iIndices.push(J);
}
}
if (!equalScalar(Mii, 0)) {
// non-singular row
b[i] = divideScalar(b[i], Mii);
// loop upper triangular
for (let j = 0, lastIndex = iIndices.length; j < lastIndex; j++) {
const J = iIndices[j];
b[J] = subtractScalar(b[J], multiplyScalar(b[i], iValues[j]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
const bNew = [...b];
bNew[i] = 1;
// loop upper triangular
for (let j = 0, lastIndex = iIndices.length; j < lastIndex; j++) {
const J = iIndices[j];
bNew[J] = subtractScalar(bNew[J], iValues[j]);
}
B.push(bNew);
}
}
}
return B.map(x => new DenseMatrix({
data: x.map(e => [e]),
size: [rows, 1]
}));
}
});

View File

@@ -0,0 +1,121 @@
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createSolveValidation = createSolveValidation;
var _is = require("../../../../utils/is.js");
var _array = require("../../../../utils/array.js");
var _string = require("../../../../utils/string.js");
function createSolveValidation(_ref) {
let {
DenseMatrix
} = _ref;
/**
* Validates matrix and column vector b for backward/forward substitution algorithms.
*
* @param {Matrix} m An N x N matrix
* @param {Array | Matrix} b A column vector
* @param {Boolean} copy Return a copy of vector b
*
* @return {DenseMatrix} Dense column vector b
*/
return function solveValidation(m, b, copy) {
const mSize = m.size();
if (mSize.length !== 2) {
throw new RangeError('Matrix must be two dimensional (size: ' + (0, _string.format)(mSize) + ')');
}
const rows = mSize[0];
const columns = mSize[1];
if (rows !== columns) {
throw new RangeError('Matrix must be square (size: ' + (0, _string.format)(mSize) + ')');
}
let data = [];
if ((0, _is.isMatrix)(b)) {
const bSize = b.size();
const bdata = b._data;
// 1-dim vector
if (bSize.length === 1) {
if (bSize[0] !== rows) {
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
}
for (let i = 0; i < rows; i++) {
data[i] = [bdata[i]];
}
return new DenseMatrix({
data,
size: [rows, 1],
datatype: b._datatype
});
}
// 2-dim column
if (bSize.length === 2) {
if (bSize[0] !== rows || bSize[1] !== 1) {
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
}
if ((0, _is.isDenseMatrix)(b)) {
if (copy) {
data = [];
for (let i = 0; i < rows; i++) {
data[i] = [bdata[i][0]];
}
return new DenseMatrix({
data,
size: [rows, 1],
datatype: b._datatype
});
}
return b;
}
if ((0, _is.isSparseMatrix)(b)) {
for (let i = 0; i < rows; i++) {
data[i] = [0];
}
const values = b._values;
const index = b._index;
const ptr = b._ptr;
for (let k1 = ptr[1], k = ptr[0]; k < k1; k++) {
const i = index[k];
data[i][0] = values[k];
}
return new DenseMatrix({
data,
size: [rows, 1],
datatype: b._datatype
});
}
}
throw new RangeError('Dimension mismatch. The right side has to be either 1- or 2-dimensional vector.');
}
if ((0, _is.isArray)(b)) {
const bsize = (0, _array.arraySize)(b);
if (bsize.length === 1) {
if (bsize[0] !== rows) {
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
}
for (let i = 0; i < rows; i++) {
data[i] = [b[i]];
}
return new DenseMatrix({
data,
size: [rows, 1]
});
}
if (bsize.length === 2) {
if (bsize[0] !== rows || bsize[1] !== 1) {
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
}
for (let i = 0; i < rows; i++) {
data[i] = [b[i][0]];
}
return new DenseMatrix({
data,
size: [rows, 1]
});
}
throw new RangeError('Dimension mismatch. The right side has to be either 1- or 2-dimensional vector.');
}
};
}