feat:node-modules
This commit is contained in:
167
node_modules/mathjs/lib/cjs/function/algebra/solver/usolve.js
generated
vendored
Normal file
167
node_modules/mathjs/lib/cjs/function/algebra/solver/usolve.js
generated
vendored
Normal file
@@ -0,0 +1,167 @@
|
||||
"use strict";
|
||||
|
||||
Object.defineProperty(exports, "__esModule", {
|
||||
value: true
|
||||
});
|
||||
exports.createUsolve = void 0;
|
||||
var _factory = require("../../../utils/factory.js");
|
||||
var _solveValidation = require("./utils/solveValidation.js");
|
||||
const name = 'usolve';
|
||||
const dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix'];
|
||||
const createUsolve = exports.createUsolve = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
||||
let {
|
||||
typed,
|
||||
matrix,
|
||||
divideScalar,
|
||||
multiplyScalar,
|
||||
subtractScalar,
|
||||
equalScalar,
|
||||
DenseMatrix
|
||||
} = _ref;
|
||||
const solveValidation = (0, _solveValidation.createSolveValidation)({
|
||||
DenseMatrix
|
||||
});
|
||||
|
||||
/**
|
||||
* Finds one solution of a linear equation system by backward substitution. Matrix must be an upper triangular matrix. Throws an error if there's no solution.
|
||||
*
|
||||
* `U * x = b`
|
||||
*
|
||||
* Syntax:
|
||||
*
|
||||
* math.usolve(U, b)
|
||||
*
|
||||
* Examples:
|
||||
*
|
||||
* const a = [[-2, 3], [2, 1]]
|
||||
* const b = [11, 9]
|
||||
* const x = usolve(a, b) // [[8], [9]]
|
||||
*
|
||||
* See also:
|
||||
*
|
||||
* usolveAll, lup, slu, usolve, lusolve
|
||||
*
|
||||
* @param {Matrix, Array} U A N x N matrix or array (U)
|
||||
* @param {Matrix, Array} b A column vector with the b values
|
||||
*
|
||||
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
|
||||
*/
|
||||
return typed(name, {
|
||||
'SparseMatrix, Array | Matrix': function (m, b) {
|
||||
return _sparseBackwardSubstitution(m, b);
|
||||
},
|
||||
'DenseMatrix, Array | Matrix': function (m, b) {
|
||||
return _denseBackwardSubstitution(m, b);
|
||||
},
|
||||
'Array, Array | Matrix': function (a, b) {
|
||||
const m = matrix(a);
|
||||
const r = _denseBackwardSubstitution(m, b);
|
||||
return r.valueOf();
|
||||
}
|
||||
});
|
||||
function _denseBackwardSubstitution(m, b) {
|
||||
// make b into a column vector
|
||||
b = solveValidation(m, b, true);
|
||||
const bdata = b._data;
|
||||
const rows = m._size[0];
|
||||
const columns = m._size[1];
|
||||
|
||||
// result
|
||||
const x = [];
|
||||
const mdata = m._data;
|
||||
// loop columns backwards
|
||||
for (let j = columns - 1; j >= 0; j--) {
|
||||
// b[j]
|
||||
const bj = bdata[j][0] || 0;
|
||||
// x[j]
|
||||
let xj;
|
||||
if (!equalScalar(bj, 0)) {
|
||||
// value at [j, j]
|
||||
const vjj = mdata[j][j];
|
||||
if (equalScalar(vjj, 0)) {
|
||||
// system cannot be solved
|
||||
throw new Error('Linear system cannot be solved since matrix is singular');
|
||||
}
|
||||
xj = divideScalar(bj, vjj);
|
||||
|
||||
// loop rows
|
||||
for (let i = j - 1; i >= 0; i--) {
|
||||
// update copy of b
|
||||
bdata[i] = [subtractScalar(bdata[i][0] || 0, multiplyScalar(xj, mdata[i][j]))];
|
||||
}
|
||||
} else {
|
||||
// zero value at j
|
||||
xj = 0;
|
||||
}
|
||||
// update x
|
||||
x[j] = [xj];
|
||||
}
|
||||
return new DenseMatrix({
|
||||
data: x,
|
||||
size: [rows, 1]
|
||||
});
|
||||
}
|
||||
function _sparseBackwardSubstitution(m, b) {
|
||||
// make b into a column vector
|
||||
b = solveValidation(m, b, true);
|
||||
const bdata = b._data;
|
||||
const rows = m._size[0];
|
||||
const columns = m._size[1];
|
||||
const values = m._values;
|
||||
const index = m._index;
|
||||
const ptr = m._ptr;
|
||||
|
||||
// result
|
||||
const x = [];
|
||||
|
||||
// loop columns backwards
|
||||
for (let j = columns - 1; j >= 0; j--) {
|
||||
const bj = bdata[j][0] || 0;
|
||||
if (!equalScalar(bj, 0)) {
|
||||
// non-degenerate row, find solution
|
||||
|
||||
let vjj = 0;
|
||||
|
||||
// upper triangular matrix values & index (column j)
|
||||
const jValues = [];
|
||||
const jIndices = [];
|
||||
|
||||
// first & last indeces in column
|
||||
const firstIndex = ptr[j];
|
||||
const lastIndex = ptr[j + 1];
|
||||
|
||||
// values in column, find value at [j, j], loop backwards
|
||||
for (let k = lastIndex - 1; k >= firstIndex; k--) {
|
||||
const i = index[k];
|
||||
|
||||
// check row (rows are not sorted!)
|
||||
if (i === j) {
|
||||
vjj = values[k];
|
||||
} else if (i < j) {
|
||||
// store upper triangular
|
||||
jValues.push(values[k]);
|
||||
jIndices.push(i);
|
||||
}
|
||||
}
|
||||
|
||||
// at this point we must have a value in vjj
|
||||
if (equalScalar(vjj, 0)) {
|
||||
throw new Error('Linear system cannot be solved since matrix is singular');
|
||||
}
|
||||
const xj = divideScalar(bj, vjj);
|
||||
for (let k = 0, lastIndex = jIndices.length; k < lastIndex; k++) {
|
||||
const i = jIndices[k];
|
||||
bdata[i] = [subtractScalar(bdata[i][0], multiplyScalar(xj, jValues[k]))];
|
||||
}
|
||||
x[j] = [xj];
|
||||
} else {
|
||||
// degenerate row, we can choose any value
|
||||
x[j] = [0];
|
||||
}
|
||||
}
|
||||
return new DenseMatrix({
|
||||
data: x,
|
||||
size: [rows, 1]
|
||||
});
|
||||
}
|
||||
});
|
||||
Reference in New Issue
Block a user