feat:node-modules
This commit is contained in:
164
node_modules/mathjs/lib/cjs/function/algebra/sparse/csChol.js
generated
vendored
Normal file
164
node_modules/mathjs/lib/cjs/function/algebra/sparse/csChol.js
generated
vendored
Normal file
@@ -0,0 +1,164 @@
|
||||
"use strict";
|
||||
|
||||
Object.defineProperty(exports, "__esModule", {
|
||||
value: true
|
||||
});
|
||||
exports.createCsChol = void 0;
|
||||
var _factory = require("../../../utils/factory.js");
|
||||
var _csEreach = require("./csEreach.js");
|
||||
var _csSymperm = require("./csSymperm.js");
|
||||
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
|
||||
// SPDX-License-Identifier: LGPL-2.1+
|
||||
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
|
||||
|
||||
const name = 'csChol';
|
||||
const dependencies = ['divideScalar', 'sqrt', 'subtract', 'multiply', 'im', 're', 'conj', 'equal', 'smallerEq', 'SparseMatrix'];
|
||||
const createCsChol = exports.createCsChol = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
||||
let {
|
||||
divideScalar,
|
||||
sqrt,
|
||||
subtract,
|
||||
multiply,
|
||||
im,
|
||||
re,
|
||||
conj,
|
||||
equal,
|
||||
smallerEq,
|
||||
SparseMatrix
|
||||
} = _ref;
|
||||
const csSymperm = (0, _csSymperm.createCsSymperm)({
|
||||
conj,
|
||||
SparseMatrix
|
||||
});
|
||||
|
||||
/**
|
||||
* Computes the Cholesky factorization of matrix A. It computes L and P so
|
||||
* L * L' = P * A * P'
|
||||
*
|
||||
* @param {Matrix} m The A Matrix to factorize, only upper triangular part used
|
||||
* @param {Object} s The symbolic analysis from cs_schol()
|
||||
*
|
||||
* @return {Number} The numeric Cholesky factorization of A or null
|
||||
*/
|
||||
return function csChol(m, s) {
|
||||
// validate input
|
||||
if (!m) {
|
||||
return null;
|
||||
}
|
||||
// m arrays
|
||||
const size = m._size;
|
||||
// columns
|
||||
const n = size[1];
|
||||
// symbolic analysis result
|
||||
const parent = s.parent;
|
||||
const cp = s.cp;
|
||||
const pinv = s.pinv;
|
||||
// L arrays
|
||||
const lvalues = [];
|
||||
const lindex = [];
|
||||
const lptr = [];
|
||||
// L
|
||||
const L = new SparseMatrix({
|
||||
values: lvalues,
|
||||
index: lindex,
|
||||
ptr: lptr,
|
||||
size: [n, n]
|
||||
});
|
||||
// vars
|
||||
const c = []; // (2 * n)
|
||||
const x = []; // (n)
|
||||
// compute C = P * A * P'
|
||||
const cm = pinv ? csSymperm(m, pinv, 1) : m;
|
||||
// C matrix arrays
|
||||
const cvalues = cm._values;
|
||||
const cindex = cm._index;
|
||||
const cptr = cm._ptr;
|
||||
// vars
|
||||
let k, p;
|
||||
// initialize variables
|
||||
for (k = 0; k < n; k++) {
|
||||
lptr[k] = c[k] = cp[k];
|
||||
}
|
||||
// compute L(k,:) for L*L' = C
|
||||
for (k = 0; k < n; k++) {
|
||||
// nonzero pattern of L(k,:)
|
||||
let top = (0, _csEreach.csEreach)(cm, k, parent, c);
|
||||
// x (0:k) is now zero
|
||||
x[k] = 0;
|
||||
// x = full(triu(C(:,k)))
|
||||
for (p = cptr[k]; p < cptr[k + 1]; p++) {
|
||||
if (cindex[p] <= k) {
|
||||
x[cindex[p]] = cvalues[p];
|
||||
}
|
||||
}
|
||||
// d = C(k,k)
|
||||
let d = x[k];
|
||||
// clear x for k+1st iteration
|
||||
x[k] = 0;
|
||||
// solve L(0:k-1,0:k-1) * x = C(:,k)
|
||||
for (; top < n; top++) {
|
||||
// s[top..n-1] is pattern of L(k,:)
|
||||
const i = s[top];
|
||||
// L(k,i) = x (i) / L(i,i)
|
||||
const lki = divideScalar(x[i], lvalues[lptr[i]]);
|
||||
// clear x for k+1st iteration
|
||||
x[i] = 0;
|
||||
for (p = lptr[i] + 1; p < c[i]; p++) {
|
||||
// row
|
||||
const r = lindex[p];
|
||||
// update x[r]
|
||||
x[r] = subtract(x[r], multiply(lvalues[p], lki));
|
||||
}
|
||||
// d = d - L(k,i)*L(k,i)
|
||||
d = subtract(d, multiply(lki, conj(lki)));
|
||||
p = c[i]++;
|
||||
// store L(k,i) in column i
|
||||
lindex[p] = k;
|
||||
lvalues[p] = conj(lki);
|
||||
}
|
||||
// compute L(k,k)
|
||||
if (smallerEq(re(d), 0) || !equal(im(d), 0)) {
|
||||
// not pos def
|
||||
return null;
|
||||
}
|
||||
p = c[k]++;
|
||||
// store L(k,k) = sqrt(d) in column k
|
||||
lindex[p] = k;
|
||||
lvalues[p] = sqrt(d);
|
||||
}
|
||||
// finalize L
|
||||
lptr[n] = cp[n];
|
||||
// P matrix
|
||||
let P;
|
||||
// check we need to calculate P
|
||||
if (pinv) {
|
||||
// P arrays
|
||||
const pvalues = [];
|
||||
const pindex = [];
|
||||
const pptr = [];
|
||||
// create P matrix
|
||||
for (p = 0; p < n; p++) {
|
||||
// initialize ptr (one value per column)
|
||||
pptr[p] = p;
|
||||
// index (apply permutation vector)
|
||||
pindex.push(pinv[p]);
|
||||
// value 1
|
||||
pvalues.push(1);
|
||||
}
|
||||
// update ptr
|
||||
pptr[n] = n;
|
||||
// P
|
||||
P = new SparseMatrix({
|
||||
values: pvalues,
|
||||
index: pindex,
|
||||
ptr: pptr,
|
||||
size: [n, n]
|
||||
});
|
||||
}
|
||||
// return L & P
|
||||
return {
|
||||
L,
|
||||
P
|
||||
};
|
||||
};
|
||||
});
|
||||
Reference in New Issue
Block a user