feat:node-modules

This commit is contained in:
houjunxiang
2025-11-24 10:26:18 +08:00
parent 753766893b
commit 8a3e48d856
8825 changed files with 567399 additions and 1 deletions

161
node_modules/mathjs/lib/cjs/function/special/erf.js generated vendored Normal file
View File

@@ -0,0 +1,161 @@
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createErf = void 0;
var _collection = require("../../utils/collection.js");
var _number = require("../../utils/number.js");
var _factory = require("../../utils/factory.js");
/* eslint-disable no-loss-of-precision */
const name = 'erf';
const dependencies = ['typed'];
const createErf = exports.createErf = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed
} = _ref;
/**
* Compute the erf function of a value using a rational Chebyshev
* approximations for different intervals of x.
*
* This is a translation of W. J. Cody's Fortran implementation from 1987
* ( https://www.netlib.org/specfun/erf ). See the AMS publication
* "Rational Chebyshev Approximations for the Error Function" by W. J. Cody
* for an explanation of this process.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.erf(x)
*
* Examples:
*
* math.erf(0.2) // returns 0.22270258921047847
* math.erf(-0.5) // returns -0.5204998778130465
* math.erf(4) // returns 0.9999999845827421
*
* See also:
* zeta
*
* @param {number | Array | Matrix} x A real number
* @return {number | Array | Matrix} The erf of `x`
*/
return typed('name', {
number: function (x) {
const y = Math.abs(x);
if (y >= MAX_NUM) {
return (0, _number.sign)(x);
}
if (y <= THRESH) {
return (0, _number.sign)(x) * erf1(y);
}
if (y <= 4.0) {
return (0, _number.sign)(x) * (1 - erfc2(y));
}
return (0, _number.sign)(x) * (1 - erfc3(y));
},
'Array | Matrix': typed.referToSelf(self => n => (0, _collection.deepMap)(n, self))
// TODO: For complex numbers, use the approximation for the Faddeeva function
// from "More Efficient Computation of the Complex Error Function" (AMS)
});
/**
* Approximates the error function erf() for x <= 0.46875 using this function:
* n
* erf(x) = x * sum (p_j * x^(2j)) / (q_j * x^(2j))
* j=0
*/
function erf1(y) {
const ysq = y * y;
let xnum = P[0][4] * ysq;
let xden = ysq;
let i;
for (i = 0; i < 3; i += 1) {
xnum = (xnum + P[0][i]) * ysq;
xden = (xden + Q[0][i]) * ysq;
}
return y * (xnum + P[0][3]) / (xden + Q[0][3]);
}
/**
* Approximates the complement of the error function erfc() for
* 0.46875 <= x <= 4.0 using this function:
* n
* erfc(x) = e^(-x^2) * sum (p_j * x^j) / (q_j * x^j)
* j=0
*/
function erfc2(y) {
let xnum = P[1][8] * y;
let xden = y;
let i;
for (i = 0; i < 7; i += 1) {
xnum = (xnum + P[1][i]) * y;
xden = (xden + Q[1][i]) * y;
}
const result = (xnum + P[1][7]) / (xden + Q[1][7]);
const ysq = parseInt(y * 16) / 16;
const del = (y - ysq) * (y + ysq);
return Math.exp(-ysq * ysq) * Math.exp(-del) * result;
}
/**
* Approximates the complement of the error function erfc() for x > 4.0 using
* this function:
*
* erfc(x) = (e^(-x^2) / x) * [ 1/sqrt(pi) +
* n
* 1/(x^2) * sum (p_j * x^(-2j)) / (q_j * x^(-2j)) ]
* j=0
*/
function erfc3(y) {
let ysq = 1 / (y * y);
let xnum = P[2][5] * ysq;
let xden = ysq;
let i;
for (i = 0; i < 4; i += 1) {
xnum = (xnum + P[2][i]) * ysq;
xden = (xden + Q[2][i]) * ysq;
}
let result = ysq * (xnum + P[2][4]) / (xden + Q[2][4]);
result = (SQRPI - result) / y;
ysq = parseInt(y * 16) / 16;
const del = (y - ysq) * (y + ysq);
return Math.exp(-ysq * ysq) * Math.exp(-del) * result;
}
});
/**
* Upper bound for the first approximation interval, 0 <= x <= THRESH
* @constant
*/
const THRESH = 0.46875;
/**
* Constant used by W. J. Cody's Fortran77 implementation to denote sqrt(pi)
* @constant
*/
const SQRPI = 5.6418958354775628695e-1;
/**
* Coefficients for each term of the numerator sum (p_j) for each approximation
* interval (see W. J. Cody's paper for more details)
* @constant
*/
const P = [[3.16112374387056560e00, 1.13864154151050156e02, 3.77485237685302021e02, 3.20937758913846947e03, 1.85777706184603153e-1], [5.64188496988670089e-1, 8.88314979438837594e00, 6.61191906371416295e01, 2.98635138197400131e02, 8.81952221241769090e02, 1.71204761263407058e03, 2.05107837782607147e03, 1.23033935479799725e03, 2.15311535474403846e-8], [3.05326634961232344e-1, 3.60344899949804439e-1, 1.25781726111229246e-1, 1.60837851487422766e-2, 6.58749161529837803e-4, 1.63153871373020978e-2]];
/**
* Coefficients for each term of the denominator sum (q_j) for each approximation
* interval (see W. J. Cody's paper for more details)
* @constant
*/
const Q = [[2.36012909523441209e01, 2.44024637934444173e02, 1.28261652607737228e03, 2.84423683343917062e03], [1.57449261107098347e01, 1.17693950891312499e02, 5.37181101862009858e02, 1.62138957456669019e03, 3.29079923573345963e03, 4.36261909014324716e03, 3.43936767414372164e03, 1.23033935480374942e03], [2.56852019228982242e00, 1.87295284992346047e00, 5.27905102951428412e-1, 6.05183413124413191e-2, 2.33520497626869185e-3]];
/**
* Maximum/minimum safe numbers to input to erf() (in ES6+, this number is
* Number.[MAX|MIN]_SAFE_INTEGER). erf() for all numbers beyond this limit will
* return 1
*/
const MAX_NUM = Math.pow(2, 53);

154
node_modules/mathjs/lib/cjs/function/special/zeta.js generated vendored Normal file
View File

@@ -0,0 +1,154 @@
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createZeta = void 0;
var _factory = require("../../utils/factory.js");
const name = 'zeta';
const dependencies = ['typed', 'config', 'multiply', 'pow', 'divide', 'factorial', 'equal', 'smallerEq', 'isNegative', 'gamma', 'sin', 'subtract', 'add', '?Complex', '?BigNumber', 'pi'];
const createZeta = exports.createZeta = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
config,
multiply,
pow,
divide,
factorial,
equal,
smallerEq,
isNegative,
gamma,
sin,
subtract,
add,
Complex,
BigNumber,
pi
} = _ref;
/**
* Compute the Riemann Zeta function of a value using an infinite series for
* all of the complex plane using Riemann's Functional equation.
*
* Based off the paper by Xavier Gourdon and Pascal Sebah
* ( http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf )
*
* Implementation and slight modification by Anik Patel
*
* Note: the implementation is accurate up to about 6 digits.
*
* Syntax:
*
* math.zeta(n)
*
* Examples:
*
* math.zeta(5) // returns 1.0369277551433895
* math.zeta(-0.5) // returns -0.2078862249773449
* math.zeta(math.i) // returns 0.0033002236853253153 - 0.4181554491413212i
*
* See also:
* erf
*
* @param {number | Complex | BigNumber} s A Real, Complex or BigNumber parameter to the Riemann Zeta Function
* @return {number | Complex | BigNumber} The Riemann Zeta of `s`
*/
return typed(name, {
number: s => zetaNumeric(s, value => value, () => 20),
BigNumber: s => zetaNumeric(s, value => new BigNumber(value), () => {
// relTol is for example 1e-12. Extract the positive exponent 12 from that
return Math.abs(Math.log10(config.relTol));
}),
Complex: zetaComplex
});
/**
* @param {number | BigNumber} s
* @param {(value: number) => number | BigNumber} createValue
* @param {(value: number | BigNumber | Complex) => number} determineDigits
* @returns {number | BigNumber}
*/
function zetaNumeric(s, createValue, determineDigits) {
if (equal(s, 0)) {
return createValue(-0.5);
}
if (equal(s, 1)) {
return createValue(NaN);
}
if (!isFinite(s)) {
return isNegative(s) ? createValue(NaN) : createValue(1);
}
return zeta(s, createValue, determineDigits, s => s);
}
/**
* @param {Complex} s
* @returns {Complex}
*/
function zetaComplex(s) {
if (s.re === 0 && s.im === 0) {
return new Complex(-0.5);
}
if (s.re === 1) {
return new Complex(NaN, NaN);
}
if (s.re === Infinity && s.im === 0) {
return new Complex(1);
}
if (s.im === Infinity || s.re === -Infinity) {
return new Complex(NaN, NaN);
}
return zeta(s, value => value, s => Math.round(1.3 * 15 + 0.9 * Math.abs(s.im)), s => s.re);
}
/**
* @param {number | BigNumber | Complex} s
* @param {(value: number) => number | BigNumber | Complex} createValue
* @param {(value: number | BigNumber | Complex) => number} determineDigits
* @param {(value: number | BigNumber | Complex) => number} getRe
* @returns {*|number}
*/
function zeta(s, createValue, determineDigits, getRe) {
const n = determineDigits(s);
if (getRe(s) > -(n - 1) / 2) {
return f(s, createValue(n), createValue);
} else {
// Function Equation for reflection to x < 1
let c = multiply(pow(2, s), pow(createValue(pi), subtract(s, 1)));
c = multiply(c, sin(multiply(divide(createValue(pi), 2), s)));
c = multiply(c, gamma(subtract(1, s)));
return multiply(c, zeta(subtract(1, s), createValue, determineDigits, getRe));
}
}
/**
* Calculate a portion of the sum
* @param {number | BigNumber} k a positive integer
* @param {number | BigNumber} n a positive integer
* @return {number} the portion of the sum
**/
function d(k, n) {
let S = k;
for (let j = k; smallerEq(j, n); j = add(j, 1)) {
const factor = divide(multiply(factorial(add(n, subtract(j, 1))), pow(4, j)), multiply(factorial(subtract(n, j)), factorial(multiply(2, j))));
S = add(S, factor);
}
return multiply(n, S);
}
/**
* Calculate the positive Riemann Zeta function
* @param {number} s a real or complex number with s.re > 1
* @param {number} n a positive integer
* @param {(number) => number | BigNumber | Complex} createValue
* @return {number} Riemann Zeta of s
**/
function f(s, n, createValue) {
const c = divide(1, multiply(d(createValue(0), n), subtract(1, pow(2, subtract(1, s)))));
let S = createValue(0);
for (let k = createValue(1); smallerEq(k, n); k = add(k, 1)) {
S = add(S, divide(multiply((-1) ** (k - 1), d(k, n)), pow(k, s)));
}
return multiply(c, S);
}
});