feat:node-modules

This commit is contained in:
houjunxiang
2025-11-24 10:26:18 +08:00
parent 753766893b
commit 8a3e48d856
8825 changed files with 567399 additions and 1 deletions

View File

@@ -0,0 +1,8 @@
export var derivativeDocs = {
name: 'derivative',
category: 'Algebra',
syntax: ['derivative(expr, variable)', 'derivative(expr, variable, {simplify: boolean})'],
description: 'Takes the derivative of an expression expressed in parser Nodes. The derivative will be taken over the supplied variable in the second parameter. If there are multiple variables in the expression, it will return a partial derivative.',
examples: ['derivative("2x^3", "x")', 'derivative("2x^3", "x", {simplify: false})', 'derivative("2x^2 + 3x + 4", "x")', 'derivative("sin(2x)", "x")', 'f = parse("x^2 + x")', 'x = parse("x")', 'df = derivative(f, x)', 'df.evaluate({x: 3})'],
seealso: ['simplify', 'parse', 'evaluate']
};

View File

@@ -0,0 +1,8 @@
export var leafCountDocs = {
name: 'leafCount',
category: 'Algebra',
syntax: ['leafCount(expr)'],
description: 'Computes the number of leaves in the parse tree of the given expression',
examples: ['leafCount("e^(i*pi)-1")', 'leafCount(parse("{a: 22/7, b: 10^(1/2)}"))'],
seealso: ['simplify']
};

View File

@@ -0,0 +1,8 @@
export var lsolveDocs = {
name: 'lsolve',
category: 'Algebra',
syntax: ['x=lsolve(L, b)'],
description: 'Finds one solution of the linear system L * x = b where L is an [n x n] lower triangular matrix and b is a [n] column vector.',
examples: ['a = [-2, 3; 2, 1]', 'b = [11, 9]', 'x = lsolve(a, b)'],
seealso: ['lsolveAll', 'lup', 'lusolve', 'usolve', 'matrix', 'sparse']
};

View File

@@ -0,0 +1,8 @@
export var lsolveAllDocs = {
name: 'lsolveAll',
category: 'Algebra',
syntax: ['x=lsolveAll(L, b)'],
description: 'Finds all solutions of the linear system L * x = b where L is an [n x n] lower triangular matrix and b is a [n] column vector.',
examples: ['a = [-2, 3; 2, 1]', 'b = [11, 9]', 'x = lsolve(a, b)'],
seealso: ['lsolve', 'lup', 'lusolve', 'usolve', 'matrix', 'sparse']
};

View File

@@ -0,0 +1,8 @@
export var lupDocs = {
name: 'lup',
category: 'Algebra',
syntax: ['lup(m)'],
description: 'Calculate the Matrix LU decomposition with partial pivoting. Matrix A is decomposed in three matrices (L, U, P) where P * A = L * U',
examples: ['lup([[2, 1], [1, 4]])', 'lup(matrix([[2, 1], [1, 4]]))', 'lup(sparse([[2, 1], [1, 4]]))'],
seealso: ['lusolve', 'lsolve', 'usolve', 'matrix', 'sparse', 'slu', 'qr']
};

View File

@@ -0,0 +1,8 @@
export var lusolveDocs = {
name: 'lusolve',
category: 'Algebra',
syntax: ['x=lusolve(A, b)', 'x=lusolve(lu, b)'],
description: 'Solves the linear system A * x = b where A is an [n x n] matrix and b is a [n] column vector.',
examples: ['a = [-2, 3; 2, 1]', 'b = [11, 9]', 'x = lusolve(a, b)'],
seealso: ['lup', 'slu', 'lsolve', 'usolve', 'matrix', 'sparse']
};

View File

@@ -0,0 +1,8 @@
export var lyapDocs = {
name: 'lyap',
category: 'Algebra',
syntax: ['lyap(A,Q)'],
description: 'Solves the Continuous-time Lyapunov equation AP+PA\'+Q=0 for P',
examples: ['lyap([[-2, 0], [1, -4]], [[3, 1], [1, 3]])', 'A = [[-2, 0], [1, -4]]', 'Q = [[3, 1], [1, 3]]', 'lyap(A,Q)'],
seealso: ['schur', 'sylvester']
};

View File

@@ -0,0 +1,8 @@
export var polynomialRootDocs = {
name: 'polynomialRoot',
category: 'Algebra',
syntax: ['x=polynomialRoot(-6, 3)', 'x=polynomialRoot(4, -4, 1)', 'x=polynomialRoot(-8, 12, -6, 1)'],
description: 'Finds the roots of a univariate polynomial given by its coefficients starting from constant, linear, and so on, increasing in degree.',
examples: ['a = polynomialRoot(-6, 11, -6, 1)'],
seealso: ['cbrt', 'sqrt']
};

View File

@@ -0,0 +1,8 @@
export var qrDocs = {
name: 'qr',
category: 'Algebra',
syntax: ['qr(A)'],
description: 'Calculates the Matrix QR decomposition. Matrix `A` is decomposed in two matrices (`Q`, `R`) where `Q` is an orthogonal matrix and `R` is an upper triangular matrix.',
examples: ['qr([[1, -1, 4], [1, 4, -2], [1, 4, 2], [1, -1, 0]])'],
seealso: ['lup', 'slu', 'matrix']
};

View File

@@ -0,0 +1,8 @@
export var rationalizeDocs = {
name: 'rationalize',
category: 'Algebra',
syntax: ['rationalize(expr)', 'rationalize(expr, scope)', 'rationalize(expr, scope, detailed)'],
description: 'Transform a rationalizable expression in a rational fraction. If rational fraction is one variable polynomial then converts the numerator and denominator in canonical form, with decreasing exponents, returning the coefficients of numerator.',
examples: ['rationalize("2x/y - y/(x+1)")', 'rationalize("2x/y - y/(x+1)", true)'],
seealso: ['simplify']
};

View File

@@ -0,0 +1,9 @@
export var resolveDocs = {
name: 'resolve',
category: 'Algebra',
syntax: ['resolve(node, scope)'],
description: 'Recursively substitute variables in an expression tree.',
examples: ['resolve(parse("1 + x"), { x: 7 })', 'resolve(parse("size(text)"), { text: "Hello World" })', 'resolve(parse("x + y"), { x: parse("3z") })', 'resolve(parse("3x"), { x: parse("y+z"), z: parse("w^y") })'],
seealso: ['simplify', 'evaluate'],
mayThrow: ['ReferenceError']
};

View File

@@ -0,0 +1,8 @@
export var schurDocs = {
name: 'schur',
category: 'Algebra',
syntax: ['schur(A)'],
description: 'Performs a real Schur decomposition of the real matrix A = UTU\'',
examples: ['schur([[1, 0], [-4, 3]])', 'A = [[1, 0], [-4, 3]]', 'schur(A)'],
seealso: ['lyap', 'sylvester']
};

View File

@@ -0,0 +1,8 @@
export var simplifyDocs = {
name: 'simplify',
category: 'Algebra',
syntax: ['simplify(expr)', 'simplify(expr, rules)'],
description: 'Simplify an expression tree.',
examples: ['simplify("3 + 2 / 4")', 'simplify("2x + x")', 'f = parse("x * (x + 2 + x)")', 'simplified = simplify(f)', 'simplified.evaluate({x: 2})'],
seealso: ['simplifyCore', 'derivative', 'evaluate', 'parse', 'rationalize', 'resolve']
};

View File

@@ -0,0 +1,8 @@
export var simplifyConstantDocs = {
name: 'simplifyConstant',
category: 'Algebra',
syntax: ['simplifyConstant(expr)', 'simplifyConstant(expr, options)'],
description: 'Replace constant subexpressions of node with their values.',
examples: ['simplifyConstant("(3-3)*x")', 'simplifyConstant(parse("z-cos(tau/8)"))'],
seealso: ['simplify', 'simplifyCore', 'evaluate']
};

View File

@@ -0,0 +1,8 @@
export var simplifyCoreDocs = {
name: 'simplifyCore',
category: 'Algebra',
syntax: ['simplifyCore(node)'],
description: 'Perform simple one-pass simplifications on an expression tree.',
examples: ['simplifyCore(parse("0*x"))', 'simplifyCore(parse("(x+0)*2"))'],
seealso: ['simplify', 'simplifyConstant', 'evaluate']
};

View File

@@ -0,0 +1,8 @@
export var sluDocs = {
name: 'slu',
category: 'Algebra',
syntax: ['slu(A, order, threshold)'],
description: 'Calculate the Matrix LU decomposition with full pivoting. Matrix A is decomposed in two matrices (L, U) and two permutation vectors (pinv, q) where P * A * Q = L * U',
examples: ['slu(sparse([4.5, 0, 3.2, 0; 3.1, 2.9, 0, 0.9; 0, 1.7, 3, 0; 3.5, 0.4, 0, 1]), 1, 0.001)'],
seealso: ['lusolve', 'lsolve', 'usolve', 'matrix', 'sparse', 'lup', 'qr']
};

View File

@@ -0,0 +1,8 @@
export var sylvesterDocs = {
name: 'sylvester',
category: 'Algebra',
syntax: ['sylvester(A,B,C)'],
description: 'Solves the real-valued Sylvester equation AX+XB=C for X',
examples: ['sylvester([[-1, -2], [1, 1]], [[-2, 1], [-1, 2]], [[-3, 2], [3, 0]])', 'A = [[-1, -2], [1, 1]]; B = [[2, -1], [1, -2]]; C = [[-3, 2], [3, 0]]', 'sylvester(A, B, C)'],
seealso: ['schur', 'lyap']
};

View File

@@ -0,0 +1,8 @@
export var symbolicEqualDocs = {
name: 'symbolicEqual',
category: 'Algebra',
syntax: ['symbolicEqual(expr1, expr2)', 'symbolicEqual(expr1, expr2, options)'],
description: 'Returns true if the difference of the expressions simplifies to 0',
examples: ['symbolicEqual("x*y","y*x")', 'symbolicEqual("abs(x^2)", "x^2")', 'symbolicEqual("abs(x)", "x", {context: {abs: {trivial: true}}})'],
seealso: ['simplify', 'evaluate']
};

View File

@@ -0,0 +1,8 @@
export var usolveDocs = {
name: 'usolve',
category: 'Algebra',
syntax: ['x=usolve(U, b)'],
description: 'Finds one solution of the linear system U * x = b where U is an [n x n] upper triangular matrix and b is a [n] column vector.',
examples: ['x=usolve(sparse([1, 1, 1, 1; 0, 1, 1, 1; 0, 0, 1, 1; 0, 0, 0, 1]), [1; 2; 3; 4])'],
seealso: ['usolveAll', 'lup', 'lusolve', 'lsolve', 'matrix', 'sparse']
};

View File

@@ -0,0 +1,8 @@
export var usolveAllDocs = {
name: 'usolveAll',
category: 'Algebra',
syntax: ['x=usolve(U, b)'],
description: 'Finds all solutions of the linear system U * x = b where U is an [n x n] upper triangular matrix and b is a [n] column vector.',
examples: ['x=usolve(sparse([1, 1, 1, 1; 0, 1, 1, 1; 0, 0, 1, 1; 0, 0, 0, 1]), [1; 2; 3; 4])'],
seealso: ['usolve', 'lup', 'lusolve', 'lsolve', 'matrix', 'sparse']
};