feat:node-modules

This commit is contained in:
houjunxiang
2025-11-24 10:26:18 +08:00
parent 753766893b
commit 8a3e48d856
8825 changed files with 567399 additions and 1 deletions

View File

@@ -0,0 +1,8 @@
export var corrDocs = {
name: 'corr',
category: 'Statistics',
syntax: ['corr(A,B)'],
description: 'Compute the correlation coefficient of a two list with values, For matrices, the matrix correlation coefficient is calculated.',
examples: ['corr([2, 4, 6, 8],[1, 2, 3, 6])', 'corr(matrix([[1, 2.2, 3, 4.8, 5], [1, 2, 3, 4, 5]]), matrix([[4, 5.3, 6.6, 7, 8], [1, 2, 3, 4, 5]]))'],
seealso: ['max', 'mean', 'min', 'median', 'min', 'prod', 'std', 'sum']
};

View File

@@ -0,0 +1,8 @@
export var cumSumDocs = {
name: 'cumsum',
category: 'Statistics',
syntax: ['cumsum(a, b, c, ...)', 'cumsum(A)'],
description: 'Compute the cumulative sum of all values.',
examples: ['cumsum(2, 3, 4, 1)', 'cumsum([2, 3, 4, 1])', 'cumsum([1, 2; 3, 4])', 'cumsum([1, 2; 3, 4], 1)', 'cumsum([1, 2; 3, 4], 2)'],
seealso: ['max', 'mean', 'median', 'min', 'prod', 'std', 'sum', 'variance']
};

View File

@@ -0,0 +1,8 @@
export var madDocs = {
name: 'mad',
category: 'Statistics',
syntax: ['mad(a, b, c, ...)', 'mad(A)'],
description: 'Compute the median absolute deviation of a matrix or a list with values. The median absolute deviation is defined as the median of the absolute deviations from the median.',
examples: ['mad(10, 20, 30)', 'mad([1, 2, 3])'],
seealso: ['mean', 'median', 'std', 'abs']
};

View File

@@ -0,0 +1,8 @@
export var maxDocs = {
name: 'max',
category: 'Statistics',
syntax: ['max(a, b, c, ...)', 'max(A)', 'max(A, dimension)'],
description: 'Compute the maximum value of a list of values.',
examples: ['max(2, 3, 4, 1)', 'max([2, 3, 4, 1])', 'max([2, 5; 4, 3])', 'max([2, 5; 4, 3], 1)', 'max([2, 5; 4, 3], 2)', 'max(2.7, 7.1, -4.5, 2.0, 4.1)', 'min(2.7, 7.1, -4.5, 2.0, 4.1)'],
seealso: ['mean', 'median', 'min', 'prod', 'std', 'sum', 'variance']
};

View File

@@ -0,0 +1,8 @@
export var meanDocs = {
name: 'mean',
category: 'Statistics',
syntax: ['mean(a, b, c, ...)', 'mean(A)', 'mean(A, dimension)'],
description: 'Compute the arithmetic mean of a list of values.',
examples: ['mean(2, 3, 4, 1)', 'mean([2, 3, 4, 1])', 'mean([2, 5; 4, 3])', 'mean([2, 5; 4, 3], 1)', 'mean([2, 5; 4, 3], 2)', 'mean([1.0, 2.7, 3.2, 4.0])'],
seealso: ['max', 'median', 'min', 'prod', 'std', 'sum', 'variance']
};

View File

@@ -0,0 +1,8 @@
export var medianDocs = {
name: 'median',
category: 'Statistics',
syntax: ['median(a, b, c, ...)', 'median(A)'],
description: 'Compute the median of all values. The values are sorted and the middle value is returned. In case of an even number of values, the average of the two middle values is returned.',
examples: ['median(5, 2, 7)', 'median([3, -1, 5, 7])'],
seealso: ['max', 'mean', 'min', 'prod', 'std', 'sum', 'variance', 'quantileSeq']
};

View File

@@ -0,0 +1,8 @@
export var minDocs = {
name: 'min',
category: 'Statistics',
syntax: ['min(a, b, c, ...)', 'min(A)', 'min(A, dimension)'],
description: 'Compute the minimum value of a list of values.',
examples: ['min(2, 3, 4, 1)', 'min([2, 3, 4, 1])', 'min([2, 5; 4, 3])', 'min([2, 5; 4, 3], 1)', 'min([2, 5; 4, 3], 2)', 'min(2.7, 7.1, -4.5, 2.0, 4.1)', 'max(2.7, 7.1, -4.5, 2.0, 4.1)'],
seealso: ['max', 'mean', 'median', 'prod', 'std', 'sum', 'variance']
};

View File

@@ -0,0 +1,8 @@
export var modeDocs = {
name: 'mode',
category: 'Statistics',
syntax: ['mode(a, b, c, ...)', 'mode(A)', 'mode(A, a, b, B, c, ...)'],
description: 'Computes the mode of all values as an array. In case mode being more than one, multiple values are returned in an array.',
examples: ['mode(2, 1, 4, 3, 1)', 'mode([1, 2.7, 3.2, 4, 2.7])', 'mode(1, 4, 6, 1, 6)'],
seealso: ['max', 'mean', 'min', 'median', 'prod', 'std', 'sum', 'variance']
};

View File

@@ -0,0 +1,8 @@
export var prodDocs = {
name: 'prod',
category: 'Statistics',
syntax: ['prod(a, b, c, ...)', 'prod(A)'],
description: 'Compute the product of all values.',
examples: ['prod(2, 3, 4)', 'prod([2, 3, 4])', 'prod([2, 5; 4, 3])'],
seealso: ['max', 'mean', 'min', 'median', 'min', 'std', 'sum', 'variance']
};

View File

@@ -0,0 +1,8 @@
export var quantileSeqDocs = {
name: 'quantileSeq',
category: 'Statistics',
syntax: ['quantileSeq(A, prob[, sorted])', 'quantileSeq(A, [prob1, prob2, ...][, sorted])', 'quantileSeq(A, N[, sorted])'],
description: 'Compute the prob order quantile of a matrix or a list with values. The sequence is sorted and the middle value is returned. Supported types of sequence values are: Number, BigNumber, Unit Supported types of probability are: Number, BigNumber. \n\nIn case of a (multi dimensional) array or matrix, the prob order quantile of all elements will be calculated.',
examples: ['quantileSeq([3, -1, 5, 7], 0.5)', 'quantileSeq([3, -1, 5, 7], [1/3, 2/3])', 'quantileSeq([3, -1, 5, 7], 2)', 'quantileSeq([-1, 3, 5, 7], 0.5, true)'],
seealso: ['mean', 'median', 'min', 'max', 'prod', 'std', 'sum', 'variance']
};

View File

@@ -0,0 +1,8 @@
export var stdDocs = {
name: 'std',
category: 'Statistics',
syntax: ['std(a, b, c, ...)', 'std(A)', 'std(A, dimension)', 'std(A, normalization)', 'std(A, dimension, normalization)'],
description: 'Compute the standard deviation of all values, defined as std(A) = sqrt(variance(A)). Optional parameter normalization can be "unbiased" (default), "uncorrected", or "biased".',
examples: ['std(2, 4, 6)', 'std([2, 4, 6, 8])', 'std([2, 4, 6, 8], "uncorrected")', 'std([2, 4, 6, 8], "biased")', 'std([1, 2, 3; 4, 5, 6])'],
seealso: ['max', 'mean', 'min', 'median', 'prod', 'sum', 'variance']
};

View File

@@ -0,0 +1,8 @@
export var sumDocs = {
name: 'sum',
category: 'Statistics',
syntax: ['sum(a, b, c, ...)', 'sum(A)', 'sum(A, dimension)'],
description: 'Compute the sum of all values.',
examples: ['sum(2, 3, 4, 1)', 'sum([2, 3, 4, 1])', 'sum([2, 5; 4, 3])'],
seealso: ['max', 'mean', 'median', 'min', 'prod', 'std', 'sum', 'variance']
};

View File

@@ -0,0 +1,8 @@
export var varianceDocs = {
name: 'variance',
category: 'Statistics',
syntax: ['variance(a, b, c, ...)', 'variance(A)', 'variance(A, dimension)', 'variance(A, normalization)', 'variance(A, dimension, normalization)'],
description: 'Compute the variance of all values. Optional parameter normalization can be "unbiased" (default), "uncorrected", or "biased".',
examples: ['variance(2, 4, 6)', 'variance([2, 4, 6, 8])', 'variance([2, 4, 6, 8], "uncorrected")', 'variance([2, 4, 6, 8], "biased")', 'variance([1, 2, 3; 4, 5, 6])'],
seealso: ['max', 'mean', 'min', 'median', 'min', 'prod', 'std', 'sum']
};