feat:node-modules

This commit is contained in:
houjunxiang
2025-11-24 10:26:18 +08:00
parent 753766893b
commit 8a3e48d856
8825 changed files with 567399 additions and 1 deletions

View File

@@ -0,0 +1,379 @@
import { clone } from '../../../utils/object.js';
import { factory } from '../../../utils/factory.js';
var name = 'lup';
var dependencies = ['typed', 'matrix', 'abs', 'addScalar', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'larger', 'equalScalar', 'unaryMinus', 'DenseMatrix', 'SparseMatrix', 'Spa'];
export var createLup = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
matrix,
abs,
addScalar,
divideScalar,
multiplyScalar,
subtractScalar,
larger,
equalScalar,
unaryMinus,
DenseMatrix,
SparseMatrix,
Spa
} = _ref;
/**
* Calculate the Matrix LU decomposition with partial pivoting. Matrix `A` is decomposed in two matrices (`L`, `U`) and a
* row permutation vector `p` where `A[p,:] = L * U`
*
* Syntax:
*
* math.lup(A)
*
* Example:
*
* const m = [[2, 1], [1, 4]]
* const r = math.lup(m)
* // r = {
* // L: [[1, 0], [0.5, 1]],
* // U: [[2, 1], [0, 3.5]],
* // P: [0, 1]
* // }
*
* See also:
*
* slu, lsolve, lusolve, usolve
*
* @param {Matrix | Array} A A two dimensional matrix or array for which to get the LUP decomposition.
*
* @return {{L: Array | Matrix, U: Array | Matrix, P: Array.<number>}} The lower triangular matrix, the upper triangular matrix and the permutation matrix.
*/
return typed(name, {
DenseMatrix: function DenseMatrix(m) {
return _denseLUP(m);
},
SparseMatrix: function SparseMatrix(m) {
return _sparseLUP(m);
},
Array: function Array(a) {
// create dense matrix from array
var m = matrix(a);
// lup, use matrix implementation
var r = _denseLUP(m);
// result
return {
L: r.L.valueOf(),
U: r.U.valueOf(),
p: r.p
};
}
});
function _denseLUP(m) {
// rows & columns
var rows = m._size[0];
var columns = m._size[1];
// minimum rows and columns
var n = Math.min(rows, columns);
// matrix array, clone original data
var data = clone(m._data);
// l matrix arrays
var ldata = [];
var lsize = [rows, n];
// u matrix arrays
var udata = [];
var usize = [n, columns];
// vars
var i, j, k;
// permutation vector
var p = [];
for (i = 0; i < rows; i++) {
p[i] = i;
}
// loop columns
for (j = 0; j < columns; j++) {
// skip first column in upper triangular matrix
if (j > 0) {
// loop rows
for (i = 0; i < rows; i++) {
// min i,j
var min = Math.min(i, j);
// v[i, j]
var s = 0;
// loop up to min
for (k = 0; k < min; k++) {
// s = l[i, k] - data[k, j]
s = addScalar(s, multiplyScalar(data[i][k], data[k][j]));
}
data[i][j] = subtractScalar(data[i][j], s);
}
}
// row with larger value in cvector, row >= j
var pi = j;
var pabsv = 0;
var vjj = 0;
// loop rows
for (i = j; i < rows; i++) {
// data @ i, j
var v = data[i][j];
// absolute value
var absv = abs(v);
// value is greater than pivote value
if (larger(absv, pabsv)) {
// store row
pi = i;
// update max value
pabsv = absv;
// value @ [j, j]
vjj = v;
}
}
// swap rows (j <-> pi)
if (j !== pi) {
// swap values j <-> pi in p
p[j] = [p[pi], p[pi] = p[j]][0];
// swap j <-> pi in data
DenseMatrix._swapRows(j, pi, data);
}
// check column is in lower triangular matrix
if (j < rows) {
// loop rows (lower triangular matrix)
for (i = j + 1; i < rows; i++) {
// value @ i, j
var vij = data[i][j];
if (!equalScalar(vij, 0)) {
// update data
data[i][j] = divideScalar(data[i][j], vjj);
}
}
}
}
// loop columns
for (j = 0; j < columns; j++) {
// loop rows
for (i = 0; i < rows; i++) {
// initialize row in arrays
if (j === 0) {
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i] = [];
}
// L
ldata[i] = [];
}
// check we are in the upper triangular matrix
if (i < j) {
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i][j] = data[i][j];
}
// check column exists in lower triangular matrix
if (j < rows) {
// L
ldata[i][j] = 0;
}
continue;
}
// diagonal value
if (i === j) {
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i][j] = data[i][j];
}
// check column exists in lower triangular matrix
if (j < rows) {
// L
ldata[i][j] = 1;
}
continue;
}
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i][j] = 0;
}
// check column exists in lower triangular matrix
if (j < rows) {
// L
ldata[i][j] = data[i][j];
}
}
}
// l matrix
var l = new DenseMatrix({
data: ldata,
size: lsize
});
// u matrix
var u = new DenseMatrix({
data: udata,
size: usize
});
// p vector
var pv = [];
for (i = 0, n = p.length; i < n; i++) {
pv[p[i]] = i;
}
// return matrices
return {
L: l,
U: u,
p: pv,
toString: function toString() {
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\nP: ' + this.p;
}
};
}
function _sparseLUP(m) {
// rows & columns
var rows = m._size[0];
var columns = m._size[1];
// minimum rows and columns
var n = Math.min(rows, columns);
// matrix arrays (will not be modified, thanks to permutation vector)
var values = m._values;
var index = m._index;
var ptr = m._ptr;
// l matrix arrays
var lvalues = [];
var lindex = [];
var lptr = [];
var lsize = [rows, n];
// u matrix arrays
var uvalues = [];
var uindex = [];
var uptr = [];
var usize = [n, columns];
// vars
var i, j, k;
// permutation vectors, (current index -> original index) and (original index -> current index)
var pvCo = [];
var pvOc = [];
for (i = 0; i < rows; i++) {
pvCo[i] = i;
pvOc[i] = i;
}
// swap indices in permutation vectors (condition x < y)!
var swapIndeces = function swapIndeces(x, y) {
// find pv indeces getting data from x and y
var kx = pvOc[x];
var ky = pvOc[y];
// update permutation vector current -> original
pvCo[kx] = y;
pvCo[ky] = x;
// update permutation vector original -> current
pvOc[x] = ky;
pvOc[y] = kx;
};
// loop columns
var _loop = function _loop() {
// sparse accumulator
var spa = new Spa();
// check lower triangular matrix has a value @ column j
if (j < rows) {
// update ptr
lptr.push(lvalues.length);
// first value in j column for lower triangular matrix
lvalues.push(1);
lindex.push(j);
}
// update ptr
uptr.push(uvalues.length);
// k0 <= k < k1 where k0 = _ptr[j] && k1 = _ptr[j+1]
var k0 = ptr[j];
var k1 = ptr[j + 1];
// copy column j into sparse accumulator
for (k = k0; k < k1; k++) {
// row
i = index[k];
// copy column values into sparse accumulator (use permutation vector)
spa.set(pvCo[i], values[k]);
}
// skip first column in upper triangular matrix
if (j > 0) {
// loop rows in column j (above diagonal)
spa.forEach(0, j - 1, function (k, vkj) {
// loop rows in column k (L)
SparseMatrix._forEachRow(k, lvalues, lindex, lptr, function (i, vik) {
// check row is below k
if (i > k) {
// update spa value
spa.accumulate(i, unaryMinus(multiplyScalar(vik, vkj)));
}
});
});
}
// row with larger value in spa, row >= j
var pi = j;
var vjj = spa.get(j);
var pabsv = abs(vjj);
// loop values in spa (order by row, below diagonal)
spa.forEach(j + 1, rows - 1, function (x, v) {
// absolute value
var absv = abs(v);
// value is greater than pivote value
if (larger(absv, pabsv)) {
// store row
pi = x;
// update max value
pabsv = absv;
// value @ [j, j]
vjj = v;
}
});
// swap rows (j <-> pi)
if (j !== pi) {
// swap values j <-> pi in L
SparseMatrix._swapRows(j, pi, lsize[1], lvalues, lindex, lptr);
// swap values j <-> pi in U
SparseMatrix._swapRows(j, pi, usize[1], uvalues, uindex, uptr);
// swap values in spa
spa.swap(j, pi);
// update permutation vector (swap values @ j, pi)
swapIndeces(j, pi);
}
// loop values in spa (order by row)
spa.forEach(0, rows - 1, function (x, v) {
// check we are above diagonal
if (x <= j) {
// update upper triangular matrix
uvalues.push(v);
uindex.push(x);
} else {
// update value
v = divideScalar(v, vjj);
// check value is non zero
if (!equalScalar(v, 0)) {
// update lower triangular matrix
lvalues.push(v);
lindex.push(x);
}
}
});
};
for (j = 0; j < columns; j++) {
_loop();
}
// update ptrs
uptr.push(uvalues.length);
lptr.push(lvalues.length);
// return matrices
return {
L: new SparseMatrix({
values: lvalues,
index: lindex,
ptr: lptr,
size: lsize
}),
U: new SparseMatrix({
values: uvalues,
index: uindex,
ptr: uptr,
size: usize
}),
p: pvCo,
toString: function toString() {
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\nP: ' + this.p;
}
};
}
});

View File

@@ -0,0 +1,222 @@
import _extends from "@babel/runtime/helpers/extends";
import { factory } from '../../../utils/factory.js';
var name = 'qr';
var dependencies = ['typed', 'matrix', 'zeros', 'identity', 'isZero', 'equal', 'sign', 'sqrt', 'conj', 'unaryMinus', 'addScalar', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'complex'];
export var createQr = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
matrix,
zeros,
identity,
isZero,
equal,
sign,
sqrt,
conj,
unaryMinus,
addScalar,
divideScalar,
multiplyScalar,
subtractScalar,
complex
} = _ref;
/**
* Calculate the Matrix QR decomposition. Matrix `A` is decomposed in
* two matrices (`Q`, `R`) where `Q` is an
* orthogonal matrix and `R` is an upper triangular matrix.
*
* Syntax:
*
* math.qr(A)
*
* Example:
*
* const m = [
* [1, -1, 4],
* [1, 4, -2],
* [1, 4, 2],
* [1, -1, 0]
* ]
* const result = math.qr(m)
* // r = {
* // Q: [
* // [0.5, -0.5, 0.5],
* // [0.5, 0.5, -0.5],
* // [0.5, 0.5, 0.5],
* // [0.5, -0.5, -0.5],
* // ],
* // R: [
* // [2, 3, 2],
* // [0, 5, -2],
* // [0, 0, 4],
* // [0, 0, 0]
* // ]
* // }
*
* See also:
*
* lup, lusolve
*
* @param {Matrix | Array} A A two dimensional matrix or array
* for which to get the QR decomposition.
*
* @return {{Q: Array | Matrix, R: Array | Matrix}} Q: the orthogonal
* matrix and R: the upper triangular matrix
*/
return _extends(typed(name, {
DenseMatrix: function DenseMatrix(m) {
return _denseQR(m);
},
SparseMatrix: function SparseMatrix(m) {
return _sparseQR(m);
},
Array: function Array(a) {
// create dense matrix from array
var m = matrix(a);
// lup, use matrix implementation
var r = _denseQR(m);
// result
return {
Q: r.Q.valueOf(),
R: r.R.valueOf()
};
}
}), {
_denseQRimpl
});
function _denseQRimpl(m) {
// rows & columns (m x n)
var rows = m._size[0]; // m
var cols = m._size[1]; // n
var Q = identity([rows], 'dense');
var Qdata = Q._data;
var R = m.clone();
var Rdata = R._data;
// vars
var i, j, k;
var w = zeros([rows], '');
for (k = 0; k < Math.min(cols, rows); ++k) {
/*
* **k-th Household matrix**
*
* The matrix I - 2*v*transpose(v)
* x = first column of A
* x1 = first element of x
* alpha = x1 / |x1| * |x|
* e1 = tranpose([1, 0, 0, ...])
* u = x - alpha * e1
* v = u / |u|
*
* Household matrix = I - 2 * v * tranpose(v)
*
* * Initially Q = I and R = A.
* * Household matrix is a reflection in a plane normal to v which
* will zero out all but the top right element in R.
* * Appplying reflection to both Q and R will not change product.
* * Repeat this process on the (1,1) minor to get R as an upper
* triangular matrix.
* * Reflections leave the magnitude of the columns of Q unchanged
* so Q remains othoganal.
*
*/
var pivot = Rdata[k][k];
var sgn = unaryMinus(equal(pivot, 0) ? 1 : sign(pivot));
var conjSgn = conj(sgn);
var alphaSquared = 0;
for (i = k; i < rows; i++) {
alphaSquared = addScalar(alphaSquared, multiplyScalar(Rdata[i][k], conj(Rdata[i][k])));
}
var alpha = multiplyScalar(sgn, sqrt(alphaSquared));
if (!isZero(alpha)) {
// first element in vector u
var u1 = subtractScalar(pivot, alpha);
// w = v * u1 / |u| (only elements k to (rows-1) are used)
w[k] = 1;
for (i = k + 1; i < rows; i++) {
w[i] = divideScalar(Rdata[i][k], u1);
}
// tau = - conj(u1 / alpha)
var tau = unaryMinus(conj(divideScalar(u1, alpha)));
var s = void 0;
/*
* tau and w have been choosen so that
*
* 2 * v * tranpose(v) = tau * w * tranpose(w)
*/
/*
* -- calculate R = R - tau * w * tranpose(w) * R --
* Only do calculation with rows k to (rows-1)
* Additionally columns 0 to (k-1) will not be changed by this
* multiplication so do not bother recalculating them
*/
for (j = k; j < cols; j++) {
s = 0.0;
// calculate jth element of [tranpose(w) * R]
for (i = k; i < rows; i++) {
s = addScalar(s, multiplyScalar(conj(w[i]), Rdata[i][j]));
}
// calculate the jth element of [tau * transpose(w) * R]
s = multiplyScalar(s, tau);
for (i = k; i < rows; i++) {
Rdata[i][j] = multiplyScalar(subtractScalar(Rdata[i][j], multiplyScalar(w[i], s)), conjSgn);
}
}
/*
* -- calculate Q = Q - tau * Q * w * transpose(w) --
* Q is a square matrix (rows x rows)
* Only do calculation with columns k to (rows-1)
* Additionally rows 0 to (k-1) will not be changed by this
* multiplication so do not bother recalculating them
*/
for (i = 0; i < rows; i++) {
s = 0.0;
// calculate ith element of [Q * w]
for (j = k; j < rows; j++) {
s = addScalar(s, multiplyScalar(Qdata[i][j], w[j]));
}
// calculate the ith element of [tau * Q * w]
s = multiplyScalar(s, tau);
for (j = k; j < rows; ++j) {
Qdata[i][j] = divideScalar(subtractScalar(Qdata[i][j], multiplyScalar(s, conj(w[j]))), conjSgn);
}
}
}
}
// return matrices
return {
Q,
R,
toString: function toString() {
return 'Q: ' + this.Q.toString() + '\nR: ' + this.R.toString();
}
};
}
function _denseQR(m) {
var ret = _denseQRimpl(m);
var Rdata = ret.R._data;
if (m._data.length > 0) {
var zero = Rdata[0][0].type === 'Complex' ? complex(0) : 0;
for (var i = 0; i < Rdata.length; ++i) {
for (var j = 0; j < i && j < (Rdata[0] || []).length; ++j) {
Rdata[i][j] = zero;
}
}
}
return ret;
}
function _sparseQR(m) {
throw new Error('qr not implemented for sparse matrices yet');
}
});

View File

@@ -0,0 +1,70 @@
import { factory } from '../../../utils/factory.js';
var name = 'schur';
var dependencies = ['typed', 'matrix', 'identity', 'multiply', 'qr', 'norm', 'subtract'];
export var createSchur = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
matrix,
identity,
multiply,
qr,
norm,
subtract
} = _ref;
/**
*
* Performs a real Schur decomposition of the real matrix A = UTU' where U is orthogonal
* and T is upper quasi-triangular.
* https://en.wikipedia.org/wiki/Schur_decomposition
*
* Syntax:
*
* math.schur(A)
*
* Examples:
*
* const A = [[1, 0], [-4, 3]]
* math.schur(A) // returns {T: [[3, 4], [0, 1]], R: [[0, 1], [-1, 0]]}
*
* See also:
*
* sylvester, lyap, qr
*
* @param {Array | Matrix} A Matrix A
* @return {{U: Array | Matrix, T: Array | Matrix}} Object containing both matrix U and T of the Schur Decomposition A=UTU'
*/
return typed(name, {
Array: function Array(X) {
var r = _schur(matrix(X));
return {
U: r.U.valueOf(),
T: r.T.valueOf()
};
},
Matrix: function Matrix(X) {
return _schur(X);
}
});
function _schur(X) {
var n = X.size()[0];
var A = X;
var U = identity(n);
var k = 0;
var A0;
do {
A0 = A;
var QR = qr(A);
var Q = QR.Q;
var R = QR.R;
A = multiply(R, Q);
U = multiply(U, Q);
if (k++ > 100) {
break;
}
} while (norm(subtract(A, A0)) > 1e-4);
return {
U,
T: A
};
}
});

View File

@@ -0,0 +1,101 @@
import { isInteger } from '../../../utils/number.js';
import { factory } from '../../../utils/factory.js';
import { createCsSqr } from '../sparse/csSqr.js';
import { createCsLu } from '../sparse/csLu.js';
var name = 'slu';
var dependencies = ['typed', 'abs', 'add', 'multiply', 'transpose', 'divideScalar', 'subtract', 'larger', 'largerEq', 'SparseMatrix'];
export var createSlu = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
abs,
add,
multiply,
transpose,
divideScalar,
subtract,
larger,
largerEq,
SparseMatrix
} = _ref;
var csSqr = createCsSqr({
add,
multiply,
transpose
});
var csLu = createCsLu({
abs,
divideScalar,
multiply,
subtract,
larger,
largerEq,
SparseMatrix
});
/**
* Calculate the Sparse Matrix LU decomposition with full pivoting. Sparse Matrix `A` is decomposed in two matrices (`L`, `U`) and two permutation vectors (`pinv`, `q`) where
*
* `P * A * Q = L * U`
*
* Syntax:
*
* math.slu(A, order, threshold)
*
* Examples:
*
* const A = math.sparse([[4,3], [6, 3]])
* math.slu(A, 1, 0.001)
* // returns:
* // {
* // L: [[1, 0], [1.5, 1]]
* // U: [[4, 3], [0, -1.5]]
* // p: [0, 1]
* // q: [0, 1]
* // }
*
* See also:
*
* lup, lsolve, usolve, lusolve
*
* @param {SparseMatrix} A A two dimensional sparse matrix for which to get the LU decomposition.
* @param {Number} order The Symbolic Ordering and Analysis order:
* 0 - Natural ordering, no permutation vector q is returned
* 1 - Matrix must be square, symbolic ordering and analisis is performed on M = A + A'
* 2 - Symbolic ordering and analisis is performed on M = A' * A. Dense columns from A' are dropped, A recreated from A'.
* This is appropriatefor LU factorization of unsymmetric matrices.
* 3 - Symbolic ordering and analisis is performed on M = A' * A. This is best used for LU factorization is matrix M has no dense rows.
* A dense row is a row with more than 10*sqr(columns) entries.
* @param {Number} threshold Partial pivoting threshold (1 for partial pivoting)
*
* @return {Object} The lower triangular matrix, the upper triangular matrix and the permutation vectors.
*/
return typed(name, {
'SparseMatrix, number, number': function SparseMatrix_number_number(a, order, threshold) {
// verify order
if (!isInteger(order) || order < 0 || order > 3) {
throw new Error('Symbolic Ordering and Analysis order must be an integer number in the interval [0, 3]');
}
// verify threshold
if (threshold < 0 || threshold > 1) {
throw new Error('Partial pivoting threshold must be a number from 0 to 1');
}
// perform symbolic ordering and analysis
var s = csSqr(order, a, false);
// perform lu decomposition
var f = csLu(a, s, threshold);
// return decomposition
return {
L: f.L,
U: f.U,
p: f.pinv,
q: s.q,
toString: function toString() {
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\np: ' + this.p.toString() + (this.q ? '\nq: ' + this.q.toString() : '') + '\n';
}
};
}
});
});