feat:node-modules
This commit is contained in:
157
node_modules/mathjs/lib/esm/function/algebra/solver/lsolve.js
generated
vendored
Normal file
157
node_modules/mathjs/lib/esm/function/algebra/solver/lsolve.js
generated
vendored
Normal file
@@ -0,0 +1,157 @@
|
||||
import { factory } from '../../../utils/factory.js';
|
||||
import { createSolveValidation } from './utils/solveValidation.js';
|
||||
var name = 'lsolve';
|
||||
var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix'];
|
||||
export var createLsolve = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||||
var {
|
||||
typed,
|
||||
matrix,
|
||||
divideScalar,
|
||||
multiplyScalar,
|
||||
subtractScalar,
|
||||
equalScalar,
|
||||
DenseMatrix
|
||||
} = _ref;
|
||||
var solveValidation = createSolveValidation({
|
||||
DenseMatrix
|
||||
});
|
||||
|
||||
/**
|
||||
* Finds one solution of a linear equation system by forwards substitution. Matrix must be a lower triangular matrix. Throws an error if there's no solution.
|
||||
*
|
||||
* `L * x = b`
|
||||
*
|
||||
* Syntax:
|
||||
*
|
||||
* math.lsolve(L, b)
|
||||
*
|
||||
* Examples:
|
||||
*
|
||||
* const a = [[-2, 3], [2, 1]]
|
||||
* const b = [11, 9]
|
||||
* const x = lsolve(a, b) // [[-5.5], [20]]
|
||||
*
|
||||
* See also:
|
||||
*
|
||||
* lsolveAll, lup, slu, usolve, lusolve
|
||||
*
|
||||
* @param {Matrix, Array} L A N x N matrix or array (L)
|
||||
* @param {Matrix, Array} b A column vector with the b values
|
||||
*
|
||||
* @return {DenseMatrix | Array} A column vector with the linear system solution (x)
|
||||
*/
|
||||
return typed(name, {
|
||||
'SparseMatrix, Array | Matrix': function SparseMatrix_Array__Matrix(m, b) {
|
||||
return _sparseForwardSubstitution(m, b);
|
||||
},
|
||||
'DenseMatrix, Array | Matrix': function DenseMatrix_Array__Matrix(m, b) {
|
||||
return _denseForwardSubstitution(m, b);
|
||||
},
|
||||
'Array, Array | Matrix': function Array_Array__Matrix(a, b) {
|
||||
var m = matrix(a);
|
||||
var r = _denseForwardSubstitution(m, b);
|
||||
return r.valueOf();
|
||||
}
|
||||
});
|
||||
function _denseForwardSubstitution(m, b) {
|
||||
// validate matrix and vector, return copy of column vector b
|
||||
b = solveValidation(m, b, true);
|
||||
var bdata = b._data;
|
||||
var rows = m._size[0];
|
||||
var columns = m._size[1];
|
||||
|
||||
// result
|
||||
var x = [];
|
||||
var mdata = m._data;
|
||||
|
||||
// loop columns
|
||||
for (var j = 0; j < columns; j++) {
|
||||
var bj = bdata[j][0] || 0;
|
||||
var xj = void 0;
|
||||
if (!equalScalar(bj, 0)) {
|
||||
// non-degenerate row, find solution
|
||||
|
||||
var vjj = mdata[j][j];
|
||||
if (equalScalar(vjj, 0)) {
|
||||
throw new Error('Linear system cannot be solved since matrix is singular');
|
||||
}
|
||||
xj = divideScalar(bj, vjj);
|
||||
|
||||
// loop rows
|
||||
for (var i = j + 1; i < rows; i++) {
|
||||
bdata[i] = [subtractScalar(bdata[i][0] || 0, multiplyScalar(xj, mdata[i][j]))];
|
||||
}
|
||||
} else {
|
||||
// degenerate row, we can choose any value
|
||||
xj = 0;
|
||||
}
|
||||
x[j] = [xj];
|
||||
}
|
||||
return new DenseMatrix({
|
||||
data: x,
|
||||
size: [rows, 1]
|
||||
});
|
||||
}
|
||||
function _sparseForwardSubstitution(m, b) {
|
||||
// validate matrix and vector, return copy of column vector b
|
||||
b = solveValidation(m, b, true);
|
||||
var bdata = b._data;
|
||||
var rows = m._size[0];
|
||||
var columns = m._size[1];
|
||||
var values = m._values;
|
||||
var index = m._index;
|
||||
var ptr = m._ptr;
|
||||
|
||||
// result
|
||||
var x = [];
|
||||
|
||||
// loop columns
|
||||
for (var j = 0; j < columns; j++) {
|
||||
var bj = bdata[j][0] || 0;
|
||||
if (!equalScalar(bj, 0)) {
|
||||
// non-degenerate row, find solution
|
||||
|
||||
var vjj = 0;
|
||||
// matrix values & indices (column j)
|
||||
var jValues = [];
|
||||
var jIndices = [];
|
||||
|
||||
// first and last index in the column
|
||||
var firstIndex = ptr[j];
|
||||
var lastIndex = ptr[j + 1];
|
||||
|
||||
// values in column, find value at [j, j]
|
||||
for (var k = firstIndex; k < lastIndex; k++) {
|
||||
var i = index[k];
|
||||
|
||||
// check row (rows are not sorted!)
|
||||
if (i === j) {
|
||||
vjj = values[k];
|
||||
} else if (i > j) {
|
||||
// store lower triangular
|
||||
jValues.push(values[k]);
|
||||
jIndices.push(i);
|
||||
}
|
||||
}
|
||||
|
||||
// at this point we must have a value in vjj
|
||||
if (equalScalar(vjj, 0)) {
|
||||
throw new Error('Linear system cannot be solved since matrix is singular');
|
||||
}
|
||||
var xj = divideScalar(bj, vjj);
|
||||
for (var _k = 0, l = jIndices.length; _k < l; _k++) {
|
||||
var _i = jIndices[_k];
|
||||
bdata[_i] = [subtractScalar(bdata[_i][0] || 0, multiplyScalar(xj, jValues[_k]))];
|
||||
}
|
||||
x[j] = [xj];
|
||||
} else {
|
||||
// degenerate row, we can choose any value
|
||||
x[j] = [0];
|
||||
}
|
||||
}
|
||||
return new DenseMatrix({
|
||||
data: x,
|
||||
size: [rows, 1]
|
||||
});
|
||||
}
|
||||
});
|
||||
Reference in New Issue
Block a user