feat:node-modules
This commit is contained in:
186
node_modules/mathjs/lib/esm/function/algebra/solver/lsolveAll.js
generated
vendored
Normal file
186
node_modules/mathjs/lib/esm/function/algebra/solver/lsolveAll.js
generated
vendored
Normal file
@@ -0,0 +1,186 @@
|
||||
import { factory } from '../../../utils/factory.js';
|
||||
import { createSolveValidation } from './utils/solveValidation.js';
|
||||
var name = 'lsolveAll';
|
||||
var dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix'];
|
||||
export var createLsolveAll = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||||
var {
|
||||
typed,
|
||||
matrix,
|
||||
divideScalar,
|
||||
multiplyScalar,
|
||||
subtractScalar,
|
||||
equalScalar,
|
||||
DenseMatrix
|
||||
} = _ref;
|
||||
var solveValidation = createSolveValidation({
|
||||
DenseMatrix
|
||||
});
|
||||
|
||||
/**
|
||||
* Finds all solutions of a linear equation system by forwards substitution. Matrix must be a lower triangular matrix.
|
||||
*
|
||||
* `L * x = b`
|
||||
*
|
||||
* Syntax:
|
||||
*
|
||||
* math.lsolveAll(L, b)
|
||||
*
|
||||
* Examples:
|
||||
*
|
||||
* const a = [[-2, 3], [2, 1]]
|
||||
* const b = [11, 9]
|
||||
* const x = lsolveAll(a, b) // [ [[-5.5], [20]] ]
|
||||
*
|
||||
* See also:
|
||||
*
|
||||
* lsolve, lup, slu, usolve, lusolve
|
||||
*
|
||||
* @param {Matrix, Array} L A N x N matrix or array (L)
|
||||
* @param {Matrix, Array} b A column vector with the b values
|
||||
*
|
||||
* @return {DenseMatrix[] | Array[]} An array of affine-independent column vectors (x) that solve the linear system
|
||||
*/
|
||||
return typed(name, {
|
||||
'SparseMatrix, Array | Matrix': function SparseMatrix_Array__Matrix(m, b) {
|
||||
return _sparseForwardSubstitution(m, b);
|
||||
},
|
||||
'DenseMatrix, Array | Matrix': function DenseMatrix_Array__Matrix(m, b) {
|
||||
return _denseForwardSubstitution(m, b);
|
||||
},
|
||||
'Array, Array | Matrix': function Array_Array__Matrix(a, b) {
|
||||
var m = matrix(a);
|
||||
var R = _denseForwardSubstitution(m, b);
|
||||
return R.map(r => r.valueOf());
|
||||
}
|
||||
});
|
||||
function _denseForwardSubstitution(m, b_) {
|
||||
// the algorithm is derived from
|
||||
// https://www.overleaf.com/read/csvgqdxggyjv
|
||||
|
||||
// array of right-hand sides
|
||||
var B = [solveValidation(m, b_, true)._data.map(e => e[0])];
|
||||
var M = m._data;
|
||||
var rows = m._size[0];
|
||||
var columns = m._size[1];
|
||||
|
||||
// loop columns
|
||||
for (var i = 0; i < columns; i++) {
|
||||
var L = B.length;
|
||||
|
||||
// loop right-hand sides
|
||||
for (var k = 0; k < L; k++) {
|
||||
var b = B[k];
|
||||
if (!equalScalar(M[i][i], 0)) {
|
||||
// non-singular row
|
||||
|
||||
b[i] = divideScalar(b[i], M[i][i]);
|
||||
for (var j = i + 1; j < columns; j++) {
|
||||
// b[j] -= b[i] * M[j,i]
|
||||
b[j] = subtractScalar(b[j], multiplyScalar(b[i], M[j][i]));
|
||||
}
|
||||
} else if (!equalScalar(b[i], 0)) {
|
||||
// singular row, nonzero RHS
|
||||
|
||||
if (k === 0) {
|
||||
// There is no valid solution
|
||||
return [];
|
||||
} else {
|
||||
// This RHS is invalid but other solutions may still exist
|
||||
B.splice(k, 1);
|
||||
k -= 1;
|
||||
L -= 1;
|
||||
}
|
||||
} else if (k === 0) {
|
||||
// singular row, RHS is zero
|
||||
|
||||
var bNew = [...b];
|
||||
bNew[i] = 1;
|
||||
for (var _j = i + 1; _j < columns; _j++) {
|
||||
bNew[_j] = subtractScalar(bNew[_j], M[_j][i]);
|
||||
}
|
||||
B.push(bNew);
|
||||
}
|
||||
}
|
||||
}
|
||||
return B.map(x => new DenseMatrix({
|
||||
data: x.map(e => [e]),
|
||||
size: [rows, 1]
|
||||
}));
|
||||
}
|
||||
function _sparseForwardSubstitution(m, b_) {
|
||||
// array of right-hand sides
|
||||
var B = [solveValidation(m, b_, true)._data.map(e => e[0])];
|
||||
var rows = m._size[0];
|
||||
var columns = m._size[1];
|
||||
var values = m._values;
|
||||
var index = m._index;
|
||||
var ptr = m._ptr;
|
||||
|
||||
// loop columns
|
||||
for (var i = 0; i < columns; i++) {
|
||||
var L = B.length;
|
||||
|
||||
// loop right-hand sides
|
||||
for (var k = 0; k < L; k++) {
|
||||
var b = B[k];
|
||||
|
||||
// values & indices (column i)
|
||||
var iValues = [];
|
||||
var iIndices = [];
|
||||
|
||||
// first & last indeces in column
|
||||
var firstIndex = ptr[i];
|
||||
var lastIndex = ptr[i + 1];
|
||||
|
||||
// find the value at [i, i]
|
||||
var Mii = 0;
|
||||
for (var j = firstIndex; j < lastIndex; j++) {
|
||||
var J = index[j];
|
||||
// check row
|
||||
if (J === i) {
|
||||
Mii = values[j];
|
||||
} else if (J > i) {
|
||||
// store lower triangular
|
||||
iValues.push(values[j]);
|
||||
iIndices.push(J);
|
||||
}
|
||||
}
|
||||
if (!equalScalar(Mii, 0)) {
|
||||
// non-singular row
|
||||
|
||||
b[i] = divideScalar(b[i], Mii);
|
||||
for (var _j2 = 0, _lastIndex = iIndices.length; _j2 < _lastIndex; _j2++) {
|
||||
var _J = iIndices[_j2];
|
||||
b[_J] = subtractScalar(b[_J], multiplyScalar(b[i], iValues[_j2]));
|
||||
}
|
||||
} else if (!equalScalar(b[i], 0)) {
|
||||
// singular row, nonzero RHS
|
||||
|
||||
if (k === 0) {
|
||||
// There is no valid solution
|
||||
return [];
|
||||
} else {
|
||||
// This RHS is invalid but other solutions may still exist
|
||||
B.splice(k, 1);
|
||||
k -= 1;
|
||||
L -= 1;
|
||||
}
|
||||
} else if (k === 0) {
|
||||
// singular row, RHS is zero
|
||||
|
||||
var bNew = [...b];
|
||||
bNew[i] = 1;
|
||||
for (var _j3 = 0, _lastIndex2 = iIndices.length; _j3 < _lastIndex2; _j3++) {
|
||||
var _J2 = iIndices[_j3];
|
||||
bNew[_J2] = subtractScalar(bNew[_J2], iValues[_j3]);
|
||||
}
|
||||
B.push(bNew);
|
||||
}
|
||||
}
|
||||
}
|
||||
return B.map(x => new DenseMatrix({
|
||||
data: x.map(e => [e]),
|
||||
size: [rows, 1]
|
||||
}));
|
||||
}
|
||||
});
|
||||
Reference in New Issue
Block a user