feat:node-modules
This commit is contained in:
84
node_modules/mathjs/lib/esm/function/algebra/sparse/csSpsolve.js
generated
vendored
Normal file
84
node_modules/mathjs/lib/esm/function/algebra/sparse/csSpsolve.js
generated
vendored
Normal file
@@ -0,0 +1,84 @@
|
||||
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
|
||||
// SPDX-License-Identifier: LGPL-2.1+
|
||||
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
|
||||
import { csReach } from './csReach.js';
|
||||
import { factory } from '../../../utils/factory.js';
|
||||
var name = 'csSpsolve';
|
||||
var dependencies = ['divideScalar', 'multiply', 'subtract'];
|
||||
export var createCsSpsolve = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||||
var {
|
||||
divideScalar,
|
||||
multiply,
|
||||
subtract
|
||||
} = _ref;
|
||||
/**
|
||||
* The function csSpsolve() computes the solution to G * x = bk, where bk is the
|
||||
* kth column of B. When lo is true, the function assumes G = L is lower triangular with the
|
||||
* diagonal entry as the first entry in each column. When lo is true, the function assumes G = U
|
||||
* is upper triangular with the diagonal entry as the last entry in each column.
|
||||
*
|
||||
* @param {Matrix} g The G matrix
|
||||
* @param {Matrix} b The B matrix
|
||||
* @param {Number} k The kth column in B
|
||||
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
|
||||
* The first n entries is the nonzero pattern, the last n entries is the stack
|
||||
* @param {Array} x The soluton to the linear system G * x = b
|
||||
* @param {Array} pinv The inverse row permutation vector, must be null for L * x = b
|
||||
* @param {boolean} lo The lower (true) upper triangular (false) flag
|
||||
*
|
||||
* @return {Number} The index for the nonzero pattern
|
||||
*/
|
||||
return function csSpsolve(g, b, k, xi, x, pinv, lo) {
|
||||
// g arrays
|
||||
var gvalues = g._values;
|
||||
var gindex = g._index;
|
||||
var gptr = g._ptr;
|
||||
var gsize = g._size;
|
||||
// columns
|
||||
var n = gsize[1];
|
||||
// b arrays
|
||||
var bvalues = b._values;
|
||||
var bindex = b._index;
|
||||
var bptr = b._ptr;
|
||||
// vars
|
||||
var p, p0, p1, q;
|
||||
// xi[top..n-1] = csReach(B(:,k))
|
||||
var top = csReach(g, b, k, xi, pinv);
|
||||
// clear x
|
||||
for (p = top; p < n; p++) {
|
||||
x[xi[p]] = 0;
|
||||
}
|
||||
// scatter b
|
||||
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
|
||||
x[bindex[p]] = bvalues[p];
|
||||
}
|
||||
// loop columns
|
||||
for (var px = top; px < n; px++) {
|
||||
// x array index for px
|
||||
var j = xi[px];
|
||||
// apply permutation vector (U x = b), j maps to column J of G
|
||||
var J = pinv ? pinv[j] : j;
|
||||
// check column J is empty
|
||||
if (J < 0) {
|
||||
continue;
|
||||
}
|
||||
// column value indeces in G, p0 <= p < p1
|
||||
p0 = gptr[J];
|
||||
p1 = gptr[J + 1];
|
||||
// x(j) /= G(j,j)
|
||||
x[j] = divideScalar(x[j], gvalues[lo ? p0 : p1 - 1]);
|
||||
// first entry L(j,j)
|
||||
p = lo ? p0 + 1 : p0;
|
||||
q = lo ? p1 : p1 - 1;
|
||||
// loop
|
||||
for (; p < q; p++) {
|
||||
// row
|
||||
var i = gindex[p];
|
||||
// x(i) -= G(i,j) * x(j)
|
||||
x[i] = subtract(x[i], multiply(gvalues[p], x[j]));
|
||||
}
|
||||
}
|
||||
// return top of stack
|
||||
return top;
|
||||
};
|
||||
});
|
||||
Reference in New Issue
Block a user