feat:node-modules
This commit is contained in:
179
node_modules/mathjs/lib/esm/function/algebra/sparse/csSqr.js
generated
vendored
Normal file
179
node_modules/mathjs/lib/esm/function/algebra/sparse/csSqr.js
generated
vendored
Normal file
@@ -0,0 +1,179 @@
|
||||
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
|
||||
// SPDX-License-Identifier: LGPL-2.1+
|
||||
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
|
||||
import { csPermute } from './csPermute.js';
|
||||
import { csPost } from './csPost.js';
|
||||
import { csEtree } from './csEtree.js';
|
||||
import { createCsAmd } from './csAmd.js';
|
||||
import { createCsCounts } from './csCounts.js';
|
||||
import { factory } from '../../../utils/factory.js';
|
||||
var name = 'csSqr';
|
||||
var dependencies = ['add', 'multiply', 'transpose'];
|
||||
export var createCsSqr = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||||
var {
|
||||
add,
|
||||
multiply,
|
||||
transpose
|
||||
} = _ref;
|
||||
var csAmd = createCsAmd({
|
||||
add,
|
||||
multiply,
|
||||
transpose
|
||||
});
|
||||
var csCounts = createCsCounts({
|
||||
transpose
|
||||
});
|
||||
|
||||
/**
|
||||
* Symbolic ordering and analysis for QR and LU decompositions.
|
||||
*
|
||||
* @param {Number} order The ordering strategy (see csAmd for more details)
|
||||
* @param {Matrix} a The A matrix
|
||||
* @param {boolean} qr Symbolic ordering and analysis for QR decomposition (true) or
|
||||
* symbolic ordering and analysis for LU decomposition (false)
|
||||
*
|
||||
* @return {Object} The Symbolic ordering and analysis for matrix A
|
||||
*/
|
||||
return function csSqr(order, a, qr) {
|
||||
// a arrays
|
||||
var aptr = a._ptr;
|
||||
var asize = a._size;
|
||||
// columns
|
||||
var n = asize[1];
|
||||
// vars
|
||||
var k;
|
||||
// symbolic analysis result
|
||||
var s = {};
|
||||
// fill-reducing ordering
|
||||
s.q = csAmd(order, a);
|
||||
// validate results
|
||||
if (order && !s.q) {
|
||||
return null;
|
||||
}
|
||||
// QR symbolic analysis
|
||||
if (qr) {
|
||||
// apply permutations if needed
|
||||
var c = order ? csPermute(a, null, s.q, 0) : a;
|
||||
// etree of C'*C, where C=A(:,q)
|
||||
s.parent = csEtree(c, 1);
|
||||
// post order elimination tree
|
||||
var post = csPost(s.parent, n);
|
||||
// col counts chol(C'*C)
|
||||
s.cp = csCounts(c, s.parent, post, 1);
|
||||
// check we have everything needed to calculate number of nonzero elements
|
||||
if (c && s.parent && s.cp && _vcount(c, s)) {
|
||||
// calculate number of nonzero elements
|
||||
for (s.unz = 0, k = 0; k < n; k++) {
|
||||
s.unz += s.cp[k];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// for LU factorization only, guess nnz(L) and nnz(U)
|
||||
s.unz = 4 * aptr[n] + n;
|
||||
s.lnz = s.unz;
|
||||
}
|
||||
// return result S
|
||||
return s;
|
||||
};
|
||||
|
||||
/**
|
||||
* Compute nnz(V) = s.lnz, s.pinv, s.leftmost, s.m2 from A and s.parent
|
||||
*/
|
||||
function _vcount(a, s) {
|
||||
// a arrays
|
||||
var aptr = a._ptr;
|
||||
var aindex = a._index;
|
||||
var asize = a._size;
|
||||
// rows & columns
|
||||
var m = asize[0];
|
||||
var n = asize[1];
|
||||
// initialize s arrays
|
||||
s.pinv = []; // (m + n)
|
||||
s.leftmost = []; // (m)
|
||||
// vars
|
||||
var parent = s.parent;
|
||||
var pinv = s.pinv;
|
||||
var leftmost = s.leftmost;
|
||||
// workspace, next: first m entries, head: next n entries, tail: next n entries, nque: next n entries
|
||||
var w = []; // (m + 3 * n)
|
||||
var next = 0;
|
||||
var head = m;
|
||||
var tail = m + n;
|
||||
var nque = m + 2 * n;
|
||||
// vars
|
||||
var i, k, p, p0, p1;
|
||||
// initialize w
|
||||
for (k = 0; k < n; k++) {
|
||||
// queue k is empty
|
||||
w[head + k] = -1;
|
||||
w[tail + k] = -1;
|
||||
w[nque + k] = 0;
|
||||
}
|
||||
// initialize row arrays
|
||||
for (i = 0; i < m; i++) {
|
||||
leftmost[i] = -1;
|
||||
}
|
||||
// loop columns backwards
|
||||
for (k = n - 1; k >= 0; k--) {
|
||||
// values & index for column k
|
||||
for (p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
|
||||
// leftmost[i] = min(find(A(i,:)))
|
||||
leftmost[aindex[p]] = k;
|
||||
}
|
||||
}
|
||||
// scan rows in reverse order
|
||||
for (i = m - 1; i >= 0; i--) {
|
||||
// row i is not yet ordered
|
||||
pinv[i] = -1;
|
||||
k = leftmost[i];
|
||||
// check row i is empty
|
||||
if (k === -1) {
|
||||
continue;
|
||||
}
|
||||
// first row in queue k
|
||||
if (w[nque + k]++ === 0) {
|
||||
w[tail + k] = i;
|
||||
}
|
||||
// put i at head of queue k
|
||||
w[next + i] = w[head + k];
|
||||
w[head + k] = i;
|
||||
}
|
||||
s.lnz = 0;
|
||||
s.m2 = m;
|
||||
// find row permutation and nnz(V)
|
||||
for (k = 0; k < n; k++) {
|
||||
// remove row i from queue k
|
||||
i = w[head + k];
|
||||
// count V(k,k) as nonzero
|
||||
s.lnz++;
|
||||
// add a fictitious row
|
||||
if (i < 0) {
|
||||
i = s.m2++;
|
||||
}
|
||||
// associate row i with V(:,k)
|
||||
pinv[i] = k;
|
||||
// skip if V(k+1:m,k) is empty
|
||||
if (--nque[k] <= 0) {
|
||||
continue;
|
||||
}
|
||||
// nque[k] is nnz (V(k+1:m,k))
|
||||
s.lnz += w[nque + k];
|
||||
// move all rows to parent of k
|
||||
var pa = parent[k];
|
||||
if (pa !== -1) {
|
||||
if (w[nque + pa] === 0) {
|
||||
w[tail + pa] = w[tail + k];
|
||||
}
|
||||
w[next + w[tail + k]] = w[head + pa];
|
||||
w[head + pa] = w[next + i];
|
||||
w[nque + pa] += w[nque + k];
|
||||
}
|
||||
}
|
||||
for (i = 0; i < m; i++) {
|
||||
if (pinv[i] < 0) {
|
||||
pinv[i] = k++;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
});
|
||||
Reference in New Issue
Block a user