feat:node-modules
This commit is contained in:
192
node_modules/mathjs/lib/esm/function/arithmetic/pow.js
generated
vendored
Normal file
192
node_modules/mathjs/lib/esm/function/arithmetic/pow.js
generated
vendored
Normal file
@@ -0,0 +1,192 @@
|
||||
import { factory } from '../../utils/factory.js';
|
||||
import { isInteger } from '../../utils/number.js';
|
||||
import { arraySize as size } from '../../utils/array.js';
|
||||
import { powNumber } from '../../plain/number/index.js';
|
||||
var name = 'pow';
|
||||
var dependencies = ['typed', 'config', 'identity', 'multiply', 'matrix', 'inv', 'fraction', 'number', 'Complex'];
|
||||
export var createPow = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||||
var {
|
||||
typed,
|
||||
config,
|
||||
identity,
|
||||
multiply,
|
||||
matrix,
|
||||
inv,
|
||||
number,
|
||||
fraction,
|
||||
Complex
|
||||
} = _ref;
|
||||
/**
|
||||
* Calculates the power of x to y, `x ^ y`.
|
||||
*
|
||||
* Matrix exponentiation is supported for square matrices `x` and integers `y`:
|
||||
* when `y` is nonnegative, `x` may be any square matrix; and when `y` is
|
||||
* negative, `x` must be invertible, and then this function returns
|
||||
* inv(x)^(-y).
|
||||
*
|
||||
* For cubic roots of negative numbers, the function returns the principal
|
||||
* root by default. In order to let the function return the real root,
|
||||
* math.js can be configured with `math.config({predictable: true})`.
|
||||
* To retrieve all cubic roots of a value, use `math.cbrt(x, true)`.
|
||||
*
|
||||
* Syntax:
|
||||
*
|
||||
* math.pow(x, y)
|
||||
*
|
||||
* Examples:
|
||||
*
|
||||
* math.pow(2, 3) // returns number 8
|
||||
*
|
||||
* const a = math.complex(2, 3)
|
||||
* math.pow(a, 2) // returns Complex -5 + 12i
|
||||
*
|
||||
* const b = [[1, 2], [4, 3]]
|
||||
* math.pow(b, 2) // returns Array [[9, 8], [16, 17]]
|
||||
*
|
||||
* const c = [[1, 2], [4, 3]]
|
||||
* math.pow(c, -1) // returns Array [[-0.6, 0.4], [0.8, -0.2]]
|
||||
*
|
||||
* See also:
|
||||
*
|
||||
* multiply, sqrt, cbrt, nthRoot
|
||||
*
|
||||
* @param {number | BigNumber | bigint | Complex | Unit | Array | Matrix} x The base
|
||||
* @param {number | BigNumber | bigint | Complex} y The exponent
|
||||
* @return {number | BigNumber | bigint | Complex | Array | Matrix} The value of `x` to the power `y`
|
||||
*/
|
||||
return typed(name, {
|
||||
'number, number': _pow,
|
||||
'Complex, Complex': function Complex_Complex(x, y) {
|
||||
return x.pow(y);
|
||||
},
|
||||
'BigNumber, BigNumber': function BigNumber_BigNumber(x, y) {
|
||||
if (y.isInteger() || x >= 0 || config.predictable) {
|
||||
return x.pow(y);
|
||||
} else {
|
||||
return new Complex(x.toNumber(), 0).pow(y.toNumber(), 0);
|
||||
}
|
||||
},
|
||||
'bigint, bigint': (x, y) => x ** y,
|
||||
'Fraction, Fraction': function Fraction_Fraction(x, y) {
|
||||
var result = x.pow(y);
|
||||
if (result != null) {
|
||||
return result;
|
||||
}
|
||||
if (config.predictable) {
|
||||
throw new Error('Result of pow is non-rational and cannot be expressed as a fraction');
|
||||
} else {
|
||||
return _pow(x.valueOf(), y.valueOf());
|
||||
}
|
||||
},
|
||||
'Array, number': _powArray,
|
||||
'Array, BigNumber': function Array_BigNumber(x, y) {
|
||||
return _powArray(x, y.toNumber());
|
||||
},
|
||||
'Matrix, number': _powMatrix,
|
||||
'Matrix, BigNumber': function Matrix_BigNumber(x, y) {
|
||||
return _powMatrix(x, y.toNumber());
|
||||
},
|
||||
'Unit, number | BigNumber': function Unit_number__BigNumber(x, y) {
|
||||
return x.pow(y);
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Calculates the power of x to y, x^y, for two numbers.
|
||||
* @param {number} x
|
||||
* @param {number} y
|
||||
* @return {number | Complex} res
|
||||
* @private
|
||||
*/
|
||||
function _pow(x, y) {
|
||||
// Alternatively could define a 'realmode' config option or something, but
|
||||
// 'predictable' will work for now
|
||||
if (config.predictable && !isInteger(y) && x < 0) {
|
||||
// Check to see if y can be represented as a fraction
|
||||
try {
|
||||
var yFrac = fraction(y);
|
||||
var yNum = number(yFrac);
|
||||
if (y === yNum || Math.abs((y - yNum) / y) < 1e-14) {
|
||||
if (yFrac.d % 2 === 1) {
|
||||
return (yFrac.n % 2 === 0 ? 1 : -1) * Math.pow(-x, y);
|
||||
}
|
||||
}
|
||||
} catch (ex) {
|
||||
// fraction() throws an error if y is Infinity, etc.
|
||||
}
|
||||
|
||||
// Unable to express y as a fraction, so continue on
|
||||
}
|
||||
|
||||
// **for predictable mode** x^Infinity === NaN if x < -1
|
||||
// N.B. this behavour is different from `Math.pow` which gives
|
||||
// (-2)^Infinity === Infinity
|
||||
if (config.predictable && (x < -1 && y === Infinity || x > -1 && x < 0 && y === -Infinity)) {
|
||||
return NaN;
|
||||
}
|
||||
if (isInteger(y) || x >= 0 || config.predictable) {
|
||||
return powNumber(x, y);
|
||||
} else {
|
||||
// TODO: the following infinity checks are duplicated from powNumber. Deduplicate this somehow
|
||||
|
||||
// x^Infinity === 0 if -1 < x < 1
|
||||
// A real number 0 is returned instead of complex(0)
|
||||
if (x * x < 1 && y === Infinity || x * x > 1 && y === -Infinity) {
|
||||
return 0;
|
||||
}
|
||||
return new Complex(x, 0).pow(y, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the power of a 2d array
|
||||
* @param {Array} x must be a 2 dimensional, square matrix
|
||||
* @param {number} y a integer value (positive if `x` is not invertible)
|
||||
* @returns {Array}
|
||||
* @private
|
||||
*/
|
||||
function _powArray(x, y) {
|
||||
if (!isInteger(y)) {
|
||||
throw new TypeError('For A^b, b must be an integer (value is ' + y + ')');
|
||||
}
|
||||
// verify that A is a 2 dimensional square matrix
|
||||
var s = size(x);
|
||||
if (s.length !== 2) {
|
||||
throw new Error('For A^b, A must be 2 dimensional (A has ' + s.length + ' dimensions)');
|
||||
}
|
||||
if (s[0] !== s[1]) {
|
||||
throw new Error('For A^b, A must be square (size is ' + s[0] + 'x' + s[1] + ')');
|
||||
}
|
||||
if (y < 0) {
|
||||
try {
|
||||
return _powArray(inv(x), -y);
|
||||
} catch (error) {
|
||||
if (error.message === 'Cannot calculate inverse, determinant is zero') {
|
||||
throw new TypeError('For A^b, when A is not invertible, b must be a positive integer (value is ' + y + ')');
|
||||
}
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
var res = identity(s[0]).valueOf();
|
||||
var px = x;
|
||||
while (y >= 1) {
|
||||
if ((y & 1) === 1) {
|
||||
res = multiply(px, res);
|
||||
}
|
||||
y >>= 1;
|
||||
px = multiply(px, px);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the power of a 2d matrix
|
||||
* @param {Matrix} x must be a 2 dimensional, square matrix
|
||||
* @param {number} y a positive, integer value
|
||||
* @returns {Matrix}
|
||||
* @private
|
||||
*/
|
||||
function _powMatrix(x, y) {
|
||||
return matrix(_powArray(x.valueOf(), y));
|
||||
}
|
||||
});
|
||||
Reference in New Issue
Block a user