feat:node-modules

This commit is contained in:
houjunxiang
2025-11-24 10:26:18 +08:00
parent 753766893b
commit 8a3e48d856
8825 changed files with 567399 additions and 1 deletions

115
node_modules/mathjs/lib/esm/function/signal/freqz.js generated vendored Normal file
View File

@@ -0,0 +1,115 @@
import { factory } from '../../utils/factory.js';
var name = 'freqz';
var dependencies = ['typed', 'add', 'multiply', 'Complex', 'divide', 'matrix'];
export var createFreqz = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
add,
multiply,
Complex,
divide,
matrix
} = _ref;
/**
* Calculates the frequency response of a filter given its numerator and denominator coefficients.
*
* Syntax:
* math.freqz(b, a)
* math.freqz(b, a, w)
*
* Examples:
* math.freqz([1, 2], [1, 2, 3], 4) // returns { h: [0.5 + 0i, 0.4768589245763655 + 0.2861153547458193i, 0.25000000000000006 + 0.75i, -0.770976571635189 + 0.4625859429811135i], w: [0, 0.7853981633974483, 1.5707963267948966, 2.356194490192345 ] }
* math.freqz([1, 2], [1, 2, 3], [0, 1]) // returns { h: [0.5 + 0i, 0.45436781 + 0.38598051i], w: [0, 1] }
*
* See also:
* zpk2tf
*
* @param {Array.<number>} b The numerator coefficients of the filter.
* @param {Array.<number>} a The denominator coefficients of the filter.
* @param {Array.<number>} [w] A vector of frequencies (in radians/sample) at which the frequency response is to be computed or the number of points to compute (if a number is not provided, the default is 512 points)
* @returns {Object} An object with two properties: h, a vector containing the complex frequency response, and w, a vector containing the normalized frequencies (in radians/sample) at which the response was computed.
*
*
*/
return typed(name, {
'Array, Array': function Array_Array(b, a) {
var w = createBins(512);
return _freqz(b, a, w);
},
'Array, Array, Array': function Array_Array_Array(b, a, w) {
return _freqz(b, a, w);
},
'Array, Array, number': function Array_Array_number(b, a, w) {
if (w < 0) {
throw new Error('w must be a positive number');
}
var w2 = createBins(w);
return _freqz(b, a, w2);
},
'Matrix, Matrix': function Matrix_Matrix(b, a) {
// console.log('here')
var _w = createBins(512);
var {
w,
h
} = _freqz(b.valueOf(), a.valueOf(), _w);
return {
w: matrix(w),
h: matrix(h)
};
},
'Matrix, Matrix, Matrix': function Matrix_Matrix_Matrix(b, a, w) {
var {
h
} = _freqz(b.valueOf(), a.valueOf(), w.valueOf());
return {
h: matrix(h),
w: matrix(w)
};
},
'Matrix, Matrix, number': function Matrix_Matrix_number(b, a, w) {
if (w < 0) {
throw new Error('w must be a positive number');
}
var _w = createBins(w);
var {
h
} = _freqz(b.valueOf(), a.valueOf(), _w);
return {
h: matrix(h),
w: matrix(_w)
};
}
});
function _freqz(b, a, w) {
var num = [];
var den = [];
for (var i = 0; i < w.length; i++) {
var sumNum = Complex(0, 0);
var sumDen = Complex(0, 0);
for (var j = 0; j < b.length; j++) {
sumNum = add(sumNum, multiply(b[j], Complex(Math.cos(-j * w[i]), Math.sin(-j * w[i]))));
}
for (var _j = 0; _j < a.length; _j++) {
sumDen = add(sumDen, multiply(a[_j], Complex(Math.cos(-_j * w[i]), Math.sin(-_j * w[i]))));
}
num.push(sumNum);
den.push(sumDen);
}
var h = [];
for (var _i = 0; _i < num.length; _i++) {
h.push(divide(num[_i], den[_i]));
}
return {
h,
w
};
}
function createBins(n) {
var bins = [];
for (var i = 0; i < n; i++) {
bins.push(i / n * Math.PI);
}
return bins;
}
});

82
node_modules/mathjs/lib/esm/function/signal/zpk2tf.js generated vendored Normal file
View File

@@ -0,0 +1,82 @@
import { factory } from '../../utils/factory.js';
var name = 'zpk2tf';
var dependencies = ['typed', 'add', 'multiply', 'Complex', 'number'];
export var createZpk2tf = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
add,
multiply,
Complex,
number
} = _ref;
/**
* Compute the transfer function of a zero-pole-gain model.
*
* Syntax:
* math.zpk2tf(z, p, k)
*
* Examples:
* math.zpk2tf([1, 2], [-1, -2], 1) // returns [[1, -3, 2], [1, 3, 2]]
*
* See also:
* freqz
*
* @param {Array} z Array of zeros values
* @param {Array} p Array of poles values
* @param {number} k Gain value
* @return {Array} Two dimensional array containing the numerator (first row) and denominator (second row) polynomials
*
*/
return typed(name, {
'Array,Array,number': function ArrayArrayNumber(z, p, k) {
return _zpk2tf(z, p, k);
},
'Array,Array': function ArrayArray(z, p) {
return _zpk2tf(z, p, 1);
},
'Matrix,Matrix,number': function MatrixMatrixNumber(z, p, k) {
return _zpk2tf(z.valueOf(), p.valueOf(), k);
},
'Matrix,Matrix': function MatrixMatrix(z, p) {
return _zpk2tf(z.valueOf(), p.valueOf(), 1);
}
});
function _zpk2tf(z, p, k) {
// if z is bignumber, convert it to number
if (z.some(el => el.type === 'BigNumber')) {
z = z.map(el => number(el));
}
// if p is bignumber, convert it to number
if (p.some(el => el.type === 'BigNumber')) {
p = p.map(el => number(el));
}
var num = [Complex(1, 0)];
var den = [Complex(1, 0)];
for (var i = 0; i < z.length; i++) {
var zero = z[i];
if (typeof zero === 'number') zero = Complex(zero, 0);
num = _multiply(num, [Complex(1, 0), Complex(-zero.re, -zero.im)]);
}
for (var _i = 0; _i < p.length; _i++) {
var pole = p[_i];
if (typeof pole === 'number') pole = Complex(pole, 0);
den = _multiply(den, [Complex(1, 0), Complex(-pole.re, -pole.im)]);
}
for (var _i2 = 0; _i2 < num.length; _i2++) {
num[_i2] = multiply(num[_i2], k);
}
return [num, den];
}
function _multiply(a, b) {
var c = [];
for (var i = 0; i < a.length + b.length - 1; i++) {
c[i] = Complex(0, 0);
for (var j = 0; j < a.length; j++) {
if (i - j >= 0 && i - j < b.length) {
c[i] = add(c[i], multiply(a[j], b[i - j]));
}
}
}
return c;
}
});