feat:node-modules
This commit is contained in:
94
node_modules/mathjs/lib/esm/function/statistics/mean.js
generated
vendored
Normal file
94
node_modules/mathjs/lib/esm/function/statistics/mean.js
generated
vendored
Normal file
@@ -0,0 +1,94 @@
|
||||
import { containsCollections, deepForEach, reduce } from '../../utils/collection.js';
|
||||
import { arraySize } from '../../utils/array.js';
|
||||
import { factory } from '../../utils/factory.js';
|
||||
import { improveErrorMessage } from './utils/improveErrorMessage.js';
|
||||
var name = 'mean';
|
||||
var dependencies = ['typed', 'add', 'divide'];
|
||||
export var createMean = /* #__PURE__ */factory(name, dependencies, _ref => {
|
||||
var {
|
||||
typed,
|
||||
add,
|
||||
divide
|
||||
} = _ref;
|
||||
/**
|
||||
* Compute the mean value of matrix or a list with values.
|
||||
* In case of a multidimensional array, the mean of the flattened array
|
||||
* will be calculated. When `dim` is provided, the maximum over the selected
|
||||
* dimension will be calculated. Parameter `dim` is zero-based.
|
||||
*
|
||||
* Syntax:
|
||||
*
|
||||
* math.mean(a, b, c, ...)
|
||||
* math.mean(A)
|
||||
* math.mean(A, dimension)
|
||||
*
|
||||
* Examples:
|
||||
*
|
||||
* math.mean(2, 1, 4, 3) // returns 2.5
|
||||
* math.mean([1, 2.7, 3.2, 4]) // returns 2.725
|
||||
*
|
||||
* math.mean([[2, 5], [6, 3], [1, 7]], 0) // returns [3, 5]
|
||||
* math.mean([[2, 5], [6, 3], [1, 7]], 1) // returns [3.5, 4.5, 4]
|
||||
*
|
||||
* See also:
|
||||
*
|
||||
* median, min, max, sum, prod, std, variance
|
||||
*
|
||||
* @param {... *} args A single matrix or or multiple scalar values
|
||||
* @return {*} The mean of all values
|
||||
*/
|
||||
return typed(name, {
|
||||
// mean([a, b, c, d, ...])
|
||||
'Array | Matrix': _mean,
|
||||
// mean([a, b, c, d, ...], dim)
|
||||
'Array | Matrix, number | BigNumber': _nmeanDim,
|
||||
// mean(a, b, c, d, ...)
|
||||
'...': function _(args) {
|
||||
if (containsCollections(args)) {
|
||||
throw new TypeError('Scalar values expected in function mean');
|
||||
}
|
||||
return _mean(args);
|
||||
}
|
||||
});
|
||||
|
||||
/**
|
||||
* Calculate the mean value in an n-dimensional array, returning a
|
||||
* n-1 dimensional array
|
||||
* @param {Array} array
|
||||
* @param {number} dim
|
||||
* @return {number} mean
|
||||
* @private
|
||||
*/
|
||||
function _nmeanDim(array, dim) {
|
||||
try {
|
||||
var sum = reduce(array, dim, add);
|
||||
var s = Array.isArray(array) ? arraySize(array) : array.size();
|
||||
return divide(sum, s[dim]);
|
||||
} catch (err) {
|
||||
throw improveErrorMessage(err, 'mean');
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Recursively calculate the mean value in an n-dimensional array
|
||||
* @param {Array} array
|
||||
* @return {number} mean
|
||||
* @private
|
||||
*/
|
||||
function _mean(array) {
|
||||
var sum;
|
||||
var num = 0;
|
||||
deepForEach(array, function (value) {
|
||||
try {
|
||||
sum = sum === undefined ? value : add(sum, value);
|
||||
num++;
|
||||
} catch (err) {
|
||||
throw improveErrorMessage(err, 'mean', value);
|
||||
}
|
||||
});
|
||||
if (num === 0) {
|
||||
throw new Error('Cannot calculate the mean of an empty array');
|
||||
}
|
||||
return divide(sum, num);
|
||||
}
|
||||
});
|
||||
Reference in New Issue
Block a user