feat:node-modules
This commit is contained in:
303
node_modules/mathjs/lib/esm/plain/number/arithmetic.js
generated
vendored
Normal file
303
node_modules/mathjs/lib/esm/plain/number/arithmetic.js
generated
vendored
Normal file
@@ -0,0 +1,303 @@
|
||||
import { cbrt, expm1, isInteger, log10, log1p, log2, sign, toFixed } from '../../utils/number.js';
|
||||
var n1 = 'number';
|
||||
var n2 = 'number, number';
|
||||
export function absNumber(a) {
|
||||
return Math.abs(a);
|
||||
}
|
||||
absNumber.signature = n1;
|
||||
export function addNumber(a, b) {
|
||||
return a + b;
|
||||
}
|
||||
addNumber.signature = n2;
|
||||
export function subtractNumber(a, b) {
|
||||
return a - b;
|
||||
}
|
||||
subtractNumber.signature = n2;
|
||||
export function multiplyNumber(a, b) {
|
||||
return a * b;
|
||||
}
|
||||
multiplyNumber.signature = n2;
|
||||
export function divideNumber(a, b) {
|
||||
return a / b;
|
||||
}
|
||||
divideNumber.signature = n2;
|
||||
export function unaryMinusNumber(x) {
|
||||
return -x;
|
||||
}
|
||||
unaryMinusNumber.signature = n1;
|
||||
export function unaryPlusNumber(x) {
|
||||
return x;
|
||||
}
|
||||
unaryPlusNumber.signature = n1;
|
||||
export function cbrtNumber(x) {
|
||||
return cbrt(x);
|
||||
}
|
||||
cbrtNumber.signature = n1;
|
||||
export function cubeNumber(x) {
|
||||
return x * x * x;
|
||||
}
|
||||
cubeNumber.signature = n1;
|
||||
export function expNumber(x) {
|
||||
return Math.exp(x);
|
||||
}
|
||||
expNumber.signature = n1;
|
||||
export function expm1Number(x) {
|
||||
return expm1(x);
|
||||
}
|
||||
expm1Number.signature = n1;
|
||||
|
||||
/**
|
||||
* Calculate gcd for numbers
|
||||
* @param {number} a
|
||||
* @param {number} b
|
||||
* @returns {number} Returns the greatest common denominator of a and b
|
||||
*/
|
||||
export function gcdNumber(a, b) {
|
||||
if (!isInteger(a) || !isInteger(b)) {
|
||||
throw new Error('Parameters in function gcd must be integer numbers');
|
||||
}
|
||||
|
||||
// https://en.wikipedia.org/wiki/Euclidean_algorithm
|
||||
var r;
|
||||
while (b !== 0) {
|
||||
r = a % b;
|
||||
a = b;
|
||||
b = r;
|
||||
}
|
||||
return a < 0 ? -a : a;
|
||||
}
|
||||
gcdNumber.signature = n2;
|
||||
|
||||
/**
|
||||
* Calculate lcm for two numbers
|
||||
* @param {number} a
|
||||
* @param {number} b
|
||||
* @returns {number} Returns the least common multiple of a and b
|
||||
*/
|
||||
export function lcmNumber(a, b) {
|
||||
if (!isInteger(a) || !isInteger(b)) {
|
||||
throw new Error('Parameters in function lcm must be integer numbers');
|
||||
}
|
||||
if (a === 0 || b === 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// https://en.wikipedia.org/wiki/Euclidean_algorithm
|
||||
// evaluate lcm here inline to reduce overhead
|
||||
var t;
|
||||
var prod = a * b;
|
||||
while (b !== 0) {
|
||||
t = b;
|
||||
b = a % t;
|
||||
a = t;
|
||||
}
|
||||
return Math.abs(prod / a);
|
||||
}
|
||||
lcmNumber.signature = n2;
|
||||
|
||||
/**
|
||||
* Calculate the logarithm of a value, optionally to a given base.
|
||||
* @param {number} x
|
||||
* @param {number | null | undefined} base
|
||||
* @return {number}
|
||||
*/
|
||||
export function logNumber(x, y) {
|
||||
if (y) {
|
||||
return Math.log(x) / Math.log(y);
|
||||
}
|
||||
return Math.log(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the 10-base logarithm of a number
|
||||
* @param {number} x
|
||||
* @return {number}
|
||||
*/
|
||||
export function log10Number(x) {
|
||||
return log10(x);
|
||||
}
|
||||
log10Number.signature = n1;
|
||||
|
||||
/**
|
||||
* Calculate the 2-base logarithm of a number
|
||||
* @param {number} x
|
||||
* @return {number}
|
||||
*/
|
||||
export function log2Number(x) {
|
||||
return log2(x);
|
||||
}
|
||||
log2Number.signature = n1;
|
||||
|
||||
/**
|
||||
* Calculate the natural logarithm of a `number+1`
|
||||
* @param {number} x
|
||||
* @returns {number}
|
||||
*/
|
||||
export function log1pNumber(x) {
|
||||
return log1p(x);
|
||||
}
|
||||
log1pNumber.signature = n1;
|
||||
|
||||
/**
|
||||
* Calculate the modulus of two numbers
|
||||
* @param {number} x
|
||||
* @param {number} y
|
||||
* @returns {number} res
|
||||
* @private
|
||||
*/
|
||||
export function modNumber(x, y) {
|
||||
// We don't use JavaScript's % operator here as this doesn't work
|
||||
// correctly for x < 0 and x === 0
|
||||
// see https://en.wikipedia.org/wiki/Modulo_operation
|
||||
return y === 0 ? x : x - y * Math.floor(x / y);
|
||||
}
|
||||
modNumber.signature = n2;
|
||||
|
||||
/**
|
||||
* Calculate the nth root of a, solve x^root == a
|
||||
* http://rosettacode.org/wiki/Nth_root#JavaScript
|
||||
* @param {number} a
|
||||
* @param {number} [2] root
|
||||
* @private
|
||||
*/
|
||||
export function nthRootNumber(a) {
|
||||
var root = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 2;
|
||||
var inv = root < 0;
|
||||
if (inv) {
|
||||
root = -root;
|
||||
}
|
||||
if (root === 0) {
|
||||
throw new Error('Root must be non-zero');
|
||||
}
|
||||
if (a < 0 && Math.abs(root) % 2 !== 1) {
|
||||
throw new Error('Root must be odd when a is negative.');
|
||||
}
|
||||
|
||||
// edge cases zero and infinity
|
||||
if (a === 0) {
|
||||
return inv ? Infinity : 0;
|
||||
}
|
||||
if (!isFinite(a)) {
|
||||
return inv ? 0 : a;
|
||||
}
|
||||
var x = Math.pow(Math.abs(a), 1 / root);
|
||||
// If a < 0, we require that root is an odd integer,
|
||||
// so (-1) ^ (1/root) = -1
|
||||
x = a < 0 ? -x : x;
|
||||
return inv ? 1 / x : x;
|
||||
|
||||
// Very nice algorithm, but fails with nthRoot(-2, 3).
|
||||
// Newton's method has some well-known problems at times:
|
||||
// https://en.wikipedia.org/wiki/Newton%27s_method#Failure_analysis
|
||||
/*
|
||||
let x = 1 // Initial guess
|
||||
let xPrev = 1
|
||||
let i = 0
|
||||
const iMax = 10000
|
||||
do {
|
||||
const delta = (a / Math.pow(x, root - 1) - x) / root
|
||||
xPrev = x
|
||||
x = x + delta
|
||||
i++
|
||||
}
|
||||
while (xPrev !== x && i < iMax)
|
||||
if (xPrev !== x) {
|
||||
throw new Error('Function nthRoot failed to converge')
|
||||
}
|
||||
return inv ? 1 / x : x
|
||||
*/
|
||||
}
|
||||
export function signNumber(x) {
|
||||
return sign(x);
|
||||
}
|
||||
signNumber.signature = n1;
|
||||
export function sqrtNumber(x) {
|
||||
return Math.sqrt(x);
|
||||
}
|
||||
sqrtNumber.signature = n1;
|
||||
export function squareNumber(x) {
|
||||
return x * x;
|
||||
}
|
||||
squareNumber.signature = n1;
|
||||
|
||||
/**
|
||||
* Calculate xgcd for two numbers
|
||||
* @param {number} a
|
||||
* @param {number} b
|
||||
* @return {number} result
|
||||
* @private
|
||||
*/
|
||||
export function xgcdNumber(a, b) {
|
||||
// source: https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
|
||||
var t; // used to swap two variables
|
||||
var q; // quotient
|
||||
var r; // remainder
|
||||
var x = 0;
|
||||
var lastx = 1;
|
||||
var y = 1;
|
||||
var lasty = 0;
|
||||
if (!isInteger(a) || !isInteger(b)) {
|
||||
throw new Error('Parameters in function xgcd must be integer numbers');
|
||||
}
|
||||
while (b) {
|
||||
q = Math.floor(a / b);
|
||||
r = a - q * b;
|
||||
t = x;
|
||||
x = lastx - q * x;
|
||||
lastx = t;
|
||||
t = y;
|
||||
y = lasty - q * y;
|
||||
lasty = t;
|
||||
a = b;
|
||||
b = r;
|
||||
}
|
||||
var res;
|
||||
if (a < 0) {
|
||||
res = [-a, -lastx, -lasty];
|
||||
} else {
|
||||
res = [a, a ? lastx : 0, lasty];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
xgcdNumber.signature = n2;
|
||||
|
||||
/**
|
||||
* Calculates the power of x to y, x^y, for two numbers.
|
||||
* @param {number} x
|
||||
* @param {number} y
|
||||
* @return {number} res
|
||||
*/
|
||||
export function powNumber(x, y) {
|
||||
// x^Infinity === 0 if -1 < x < 1
|
||||
// A real number 0 is returned instead of complex(0)
|
||||
if (x * x < 1 && y === Infinity || x * x > 1 && y === -Infinity) {
|
||||
return 0;
|
||||
}
|
||||
return Math.pow(x, y);
|
||||
}
|
||||
powNumber.signature = n2;
|
||||
|
||||
/**
|
||||
* round a number to the given number of decimals, or to zero if decimals is
|
||||
* not provided
|
||||
* @param {number} value
|
||||
* @param {number} decimals number of decimals, between 0 and 15 (0 by default)
|
||||
* @return {number} roundedValue
|
||||
*/
|
||||
export function roundNumber(value) {
|
||||
var decimals = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 0;
|
||||
if (!isInteger(decimals) || decimals < 0 || decimals > 15) {
|
||||
throw new Error('Number of decimals in function round must be an integer from 0 to 15 inclusive');
|
||||
}
|
||||
return parseFloat(toFixed(value, decimals));
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the norm of a number, the absolute value.
|
||||
* @param {number} x
|
||||
* @return {number}
|
||||
*/
|
||||
export function normNumber(x) {
|
||||
return Math.abs(x);
|
||||
}
|
||||
normNumber.signature = n1;
|
||||
Reference in New Issue
Block a user