feat:node-modules

This commit is contained in:
houjunxiang
2025-11-24 10:26:18 +08:00
parent 753766893b
commit 8a3e48d856
8825 changed files with 567399 additions and 1 deletions

399
node_modules/mathjs/lib/esm/utils/bignumber/bitwise.js generated vendored Normal file
View File

@@ -0,0 +1,399 @@
/**
* Bitwise and for Bignumbers
*
* Special Cases:
* N & n = N
* n & 0 = 0
* n & -1 = n
* n & n = n
* I & I = I
* -I & -I = -I
* I & -I = 0
* I & n = n
* I & -n = I
* -I & n = 0
* -I & -n = -I
*
* @param {BigNumber} x
* @param {BigNumber} y
* @return {BigNumber} Result of `x` & `y`, is fully precise
* @private
*/
export function bitAndBigNumber(x, y) {
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
throw new Error('Integers expected in function bitAnd');
}
var BigNumber = x.constructor;
if (x.isNaN() || y.isNaN()) {
return new BigNumber(NaN);
}
if (x.isZero() || y.eq(-1) || x.eq(y)) {
return x;
}
if (y.isZero() || x.eq(-1)) {
return y;
}
if (!x.isFinite() || !y.isFinite()) {
if (!x.isFinite() && !y.isFinite()) {
if (x.isNegative() === y.isNegative()) {
return x;
}
return new BigNumber(0);
}
if (!x.isFinite()) {
if (y.isNegative()) {
return x;
}
if (x.isNegative()) {
return new BigNumber(0);
}
return y;
}
if (!y.isFinite()) {
if (x.isNegative()) {
return y;
}
if (y.isNegative()) {
return new BigNumber(0);
}
return x;
}
}
return bitwise(x, y, function (a, b) {
return a & b;
});
}
/**
* Bitwise not
* @param {BigNumber} x
* @return {BigNumber} Result of ~`x`, fully precise
*
*/
export function bitNotBigNumber(x) {
if (x.isFinite() && !x.isInteger()) {
throw new Error('Integer expected in function bitNot');
}
var BigNumber = x.constructor;
var prevPrec = BigNumber.precision;
BigNumber.config({
precision: 1E9
});
var result = x.plus(new BigNumber(1));
result.s = -result.s || null;
BigNumber.config({
precision: prevPrec
});
return result;
}
/**
* Bitwise OR for BigNumbers
*
* Special Cases:
* N | n = N
* n | 0 = n
* n | -1 = -1
* n | n = n
* I | I = I
* -I | -I = -I
* I | -n = -1
* I | -I = -1
* I | n = I
* -I | n = -I
* -I | -n = -n
*
* @param {BigNumber} x
* @param {BigNumber} y
* @return {BigNumber} Result of `x` | `y`, fully precise
*/
export function bitOrBigNumber(x, y) {
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
throw new Error('Integers expected in function bitOr');
}
var BigNumber = x.constructor;
if (x.isNaN() || y.isNaN()) {
return new BigNumber(NaN);
}
var negOne = new BigNumber(-1);
if (x.isZero() || y.eq(negOne) || x.eq(y)) {
return y;
}
if (y.isZero() || x.eq(negOne)) {
return x;
}
if (!x.isFinite() || !y.isFinite()) {
if (!x.isFinite() && !x.isNegative() && y.isNegative() || x.isNegative() && !y.isNegative() && !y.isFinite()) {
return negOne;
}
if (x.isNegative() && y.isNegative()) {
return x.isFinite() ? x : y;
}
return x.isFinite() ? y : x;
}
return bitwise(x, y, function (a, b) {
return a | b;
});
}
/**
* Applies bitwise function to numbers
* @param {BigNumber} x
* @param {BigNumber} y
* @param {function (a, b)} func
* @return {BigNumber}
*/
export function bitwise(x, y, func) {
var BigNumber = x.constructor;
var xBits, yBits;
var xSign = +(x.s < 0);
var ySign = +(y.s < 0);
if (xSign) {
xBits = decCoefficientToBinaryString(bitNotBigNumber(x));
for (var i = 0; i < xBits.length; ++i) {
xBits[i] ^= 1;
}
} else {
xBits = decCoefficientToBinaryString(x);
}
if (ySign) {
yBits = decCoefficientToBinaryString(bitNotBigNumber(y));
for (var _i = 0; _i < yBits.length; ++_i) {
yBits[_i] ^= 1;
}
} else {
yBits = decCoefficientToBinaryString(y);
}
var minBits, maxBits, minSign;
if (xBits.length <= yBits.length) {
minBits = xBits;
maxBits = yBits;
minSign = xSign;
} else {
minBits = yBits;
maxBits = xBits;
minSign = ySign;
}
var shortLen = minBits.length;
var longLen = maxBits.length;
var expFuncVal = func(xSign, ySign) ^ 1;
var outVal = new BigNumber(expFuncVal ^ 1);
var twoPower = new BigNumber(1);
var two = new BigNumber(2);
var prevPrec = BigNumber.precision;
BigNumber.config({
precision: 1E9
});
while (shortLen > 0) {
if (func(minBits[--shortLen], maxBits[--longLen]) === expFuncVal) {
outVal = outVal.plus(twoPower);
}
twoPower = twoPower.times(two);
}
while (longLen > 0) {
if (func(minSign, maxBits[--longLen]) === expFuncVal) {
outVal = outVal.plus(twoPower);
}
twoPower = twoPower.times(two);
}
BigNumber.config({
precision: prevPrec
});
if (expFuncVal === 0) {
outVal.s = -outVal.s;
}
return outVal;
}
/* Extracted from decimal.js, and edited to specialize. */
function decCoefficientToBinaryString(x) {
// Convert to string
var a = x.d; // array with digits
var r = a[0] + '';
for (var i = 1; i < a.length; ++i) {
var s = a[i] + '';
for (var z = 7 - s.length; z--;) {
s = '0' + s;
}
r += s;
}
var j = r.length;
while (r.charAt(j) === '0') {
j--;
}
var xe = x.e;
var str = r.slice(0, j + 1 || 1);
var strL = str.length;
if (xe > 0) {
if (++xe > strL) {
// Append zeros.
xe -= strL;
while (xe--) {
str += '0';
}
} else if (xe < strL) {
str = str.slice(0, xe) + '.' + str.slice(xe);
}
}
// Convert from base 10 (decimal) to base 2
var arr = [0];
for (var _i2 = 0; _i2 < str.length;) {
var arrL = arr.length;
while (arrL--) {
arr[arrL] *= 10;
}
arr[0] += parseInt(str.charAt(_i2++)); // convert to int
for (var _j = 0; _j < arr.length; ++_j) {
if (arr[_j] > 1) {
if (arr[_j + 1] === null || arr[_j + 1] === undefined) {
arr[_j + 1] = 0;
}
arr[_j + 1] += arr[_j] >> 1;
arr[_j] &= 1;
}
}
}
return arr.reverse();
}
/**
* Bitwise XOR for BigNumbers
*
* Special Cases:
* N ^ n = N
* n ^ 0 = n
* n ^ n = 0
* n ^ -1 = ~n
* I ^ n = I
* I ^ -n = -I
* I ^ -I = -1
* -I ^ n = -I
* -I ^ -n = I
*
* @param {BigNumber} x
* @param {BigNumber} y
* @return {BigNumber} Result of `x` ^ `y`, fully precise
*
*/
export function bitXor(x, y) {
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
throw new Error('Integers expected in function bitXor');
}
var BigNumber = x.constructor;
if (x.isNaN() || y.isNaN()) {
return new BigNumber(NaN);
}
if (x.isZero()) {
return y;
}
if (y.isZero()) {
return x;
}
if (x.eq(y)) {
return new BigNumber(0);
}
var negOne = new BigNumber(-1);
if (x.eq(negOne)) {
return bitNotBigNumber(y);
}
if (y.eq(negOne)) {
return bitNotBigNumber(x);
}
if (!x.isFinite() || !y.isFinite()) {
if (!x.isFinite() && !y.isFinite()) {
return negOne;
}
return new BigNumber(x.isNegative() === y.isNegative() ? Infinity : -Infinity);
}
return bitwise(x, y, function (a, b) {
return a ^ b;
});
}
/**
* Bitwise left shift
*
* Special Cases:
* n << -n = N
* n << N = N
* N << n = N
* n << 0 = n
* 0 << n = 0
* I << I = N
* I << n = I
* n << I = I
*
* @param {BigNumber} x
* @param {BigNumber} y
* @return {BigNumber} Result of `x` << `y`
*
*/
export function leftShiftBigNumber(x, y) {
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
throw new Error('Integers expected in function leftShift');
}
var BigNumber = x.constructor;
if (x.isNaN() || y.isNaN() || y.isNegative() && !y.isZero()) {
return new BigNumber(NaN);
}
if (x.isZero() || y.isZero()) {
return x;
}
if (!x.isFinite() && !y.isFinite()) {
return new BigNumber(NaN);
}
// Math.pow(2, y) is fully precise for y < 55, and fast
if (y.lt(55)) {
return x.times(Math.pow(2, y.toNumber()) + '');
}
return x.times(new BigNumber(2).pow(y));
}
/*
* Special Cases:
* n >> -n = N
* n >> N = N
* N >> n = N
* I >> I = N
* n >> 0 = n
* I >> n = I
* -I >> n = -I
* -I >> I = -I
* n >> I = I
* -n >> I = -1
* 0 >> n = 0
*
* @param {BigNumber} value
* @param {BigNumber} value
* @return {BigNumber} Result of `x` >> `y`
*
*/
export function rightArithShiftBigNumber(x, y) {
if (x.isFinite() && !x.isInteger() || y.isFinite() && !y.isInteger()) {
throw new Error('Integers expected in function rightArithShift');
}
var BigNumber = x.constructor;
if (x.isNaN() || y.isNaN() || y.isNegative() && !y.isZero()) {
return new BigNumber(NaN);
}
if (x.isZero() || y.isZero()) {
return x;
}
if (!y.isFinite()) {
if (x.isNegative()) {
return new BigNumber(-1);
}
if (!x.isFinite()) {
return new BigNumber(NaN);
}
return new BigNumber(0);
}
// Math.pow(2, y) is fully precise for y < 55, and fast
if (y.lt(55)) {
return x.div(Math.pow(2, y.toNumber()) + '').floor();
}
return x.div(new BigNumber(2).pow(y)).floor();
}

View File

@@ -0,0 +1,57 @@
import { memoize } from '../function.js';
/**
* Calculate BigNumber e
* @param {function} BigNumber BigNumber constructor
* @returns {BigNumber} Returns e
*/
export var createBigNumberE = memoize(function (BigNumber) {
return new BigNumber(1).exp();
}, {
hasher
});
/**
* Calculate BigNumber golden ratio, phi = (1+sqrt(5))/2
* @param {function} BigNumber BigNumber constructor
* @returns {BigNumber} Returns phi
*/
export var createBigNumberPhi = memoize(function (BigNumber) {
return new BigNumber(1).plus(new BigNumber(5).sqrt()).div(2);
}, {
hasher
});
/**
* Calculate BigNumber pi.
* @param {function} BigNumber BigNumber constructor
* @returns {BigNumber} Returns pi
*/
export var createBigNumberPi = memoize(function (BigNumber) {
return BigNumber.acos(-1);
}, {
hasher
});
/**
* Calculate BigNumber tau, tau = 2 * pi
* @param {function} BigNumber BigNumber constructor
* @returns {BigNumber} Returns tau
*/
export var createBigNumberTau = memoize(function (BigNumber) {
return createBigNumberPi(BigNumber).times(2);
}, {
hasher
});
/**
* Create a hash for a BigNumber constructor function. The created has is
* the configured precision
* @param {Array} args Supposed to contain a single entry with
* a BigNumber constructor
* @return {number} precision
* @private
*/
function hasher(args) {
return args[0].precision;
}

View File

@@ -0,0 +1,243 @@
import { isBigNumber, isNumber } from '../is.js';
import { isInteger, normalizeFormatOptions } from '../number.js';
/**
* Formats a BigNumber in a given base
* @param {BigNumber} n
* @param {number} base
* @param {number} size
* @returns {string}
*/
function formatBigNumberToBase(n, base, size) {
var BigNumberCtor = n.constructor;
var big2 = new BigNumberCtor(2);
var suffix = '';
if (size) {
if (size < 1) {
throw new Error('size must be in greater than 0');
}
if (!isInteger(size)) {
throw new Error('size must be an integer');
}
if (n.greaterThan(big2.pow(size - 1).sub(1)) || n.lessThan(big2.pow(size - 1).mul(-1))) {
throw new Error("Value must be in range [-2^".concat(size - 1, ", 2^").concat(size - 1, "-1]"));
}
if (!n.isInteger()) {
throw new Error('Value must be an integer');
}
if (n.lessThan(0)) {
n = n.add(big2.pow(size));
}
suffix = "i".concat(size);
}
switch (base) {
case 2:
return "".concat(n.toBinary()).concat(suffix);
case 8:
return "".concat(n.toOctal()).concat(suffix);
case 16:
return "".concat(n.toHexadecimal()).concat(suffix);
default:
throw new Error("Base ".concat(base, " not supported "));
}
}
/**
* Convert a BigNumber to a formatted string representation.
*
* Syntax:
*
* format(value)
* format(value, options)
* format(value, precision)
* format(value, fn)
*
* Where:
*
* {number} value The value to be formatted
* {Object} options An object with formatting options. Available options:
* {string} notation
* Number notation. Choose from:
* 'fixed' Always use regular number notation.
* For example '123.40' and '14000000'
* 'exponential' Always use exponential notation.
* For example '1.234e+2' and '1.4e+7'
* 'auto' (default) Regular number notation for numbers
* having an absolute value between
* `lower` and `upper` bounds, and uses
* exponential notation elsewhere.
* Lower bound is included, upper bound
* is excluded.
* For example '123.4' and '1.4e7'.
* 'bin', 'oct, or
* 'hex' Format the number using binary, octal,
* or hexadecimal notation.
* For example '0b1101' and '0x10fe'.
* {number} wordSize The word size in bits to use for formatting
* in binary, octal, or hexadecimal notation.
* To be used only with 'bin', 'oct', or 'hex'
* values for 'notation' option. When this option
* is defined the value is formatted as a signed
* twos complement integer of the given word size
* and the size suffix is appended to the output.
* For example
* format(-1, {notation: 'hex', wordSize: 8}) === '0xffi8'.
* Default value is undefined.
* {number} precision A number between 0 and 16 to round
* the digits of the number.
* In case of notations 'exponential',
* 'engineering', and 'auto',
* `precision` defines the total
* number of significant digits returned.
* In case of notation 'fixed',
* `precision` defines the number of
* significant digits after the decimal
* point.
* `precision` is undefined by default.
* {number} lowerExp Exponent determining the lower boundary
* for formatting a value with an exponent
* when `notation='auto`.
* Default value is `-3`.
* {number} upperExp Exponent determining the upper boundary
* for formatting a value with an exponent
* when `notation='auto`.
* Default value is `5`.
* {Function} fn A custom formatting function. Can be used to override the
* built-in notations. Function `fn` is called with `value` as
* parameter and must return a string. Is useful for example to
* format all values inside a matrix in a particular way.
*
* Examples:
*
* format(6.4) // '6.4'
* format(1240000) // '1.24e6'
* format(1/3) // '0.3333333333333333'
* format(1/3, 3) // '0.333'
* format(21385, 2) // '21000'
* format(12e8, {notation: 'fixed'}) // returns '1200000000'
* format(2.3, {notation: 'fixed', precision: 4}) // returns '2.3000'
* format(52.8, {notation: 'exponential'}) // returns '5.28e+1'
* format(12400, {notation: 'engineering'}) // returns '12.400e+3'
*
* @param {BigNumber} value
* @param {Object | Function | number | BigNumber} [options]
* @return {string} str The formatted value
*/
export function format(value, options) {
if (typeof options === 'function') {
// handle format(value, fn)
return options(value);
}
// handle special cases
if (!value.isFinite()) {
return value.isNaN() ? 'NaN' : value.gt(0) ? 'Infinity' : '-Infinity';
}
var {
notation,
precision,
wordSize
} = normalizeFormatOptions(options);
// handle the various notations
switch (notation) {
case 'fixed':
return toFixed(value, precision);
case 'exponential':
return toExponential(value, precision);
case 'engineering':
return toEngineering(value, precision);
case 'bin':
return formatBigNumberToBase(value, 2, wordSize);
case 'oct':
return formatBigNumberToBase(value, 8, wordSize);
case 'hex':
return formatBigNumberToBase(value, 16, wordSize);
case 'auto':
{
// determine lower and upper bound for exponential notation.
// TODO: implement support for upper and lower to be BigNumbers themselves
var lowerExp = _toNumberOrDefault(options === null || options === void 0 ? void 0 : options.lowerExp, -3);
var upperExp = _toNumberOrDefault(options === null || options === void 0 ? void 0 : options.upperExp, 5);
// handle special case zero
if (value.isZero()) return '0';
// determine whether or not to output exponential notation
var str;
var rounded = value.toSignificantDigits(precision);
var exp = rounded.e;
if (exp >= lowerExp && exp < upperExp) {
// normal number notation
str = rounded.toFixed();
} else {
// exponential notation
str = toExponential(value, precision);
}
// remove trailing zeros after the decimal point
return str.replace(/((\.\d*?)(0+))($|e)/, function () {
var digits = arguments[2];
var e = arguments[4];
return digits !== '.' ? digits + e : e;
});
}
default:
throw new Error('Unknown notation "' + notation + '". ' + 'Choose "auto", "exponential", "fixed", "bin", "oct", or "hex.');
}
}
/**
* Format a BigNumber in engineering notation. Like '1.23e+6', '2.3e+0', '3.500e-3'
* @param {BigNumber} value
* @param {number} [precision] Optional number of significant figures to return.
*/
export function toEngineering(value, precision) {
// find nearest lower multiple of 3 for exponent
var e = value.e;
var newExp = e % 3 === 0 ? e : e < 0 ? e - 3 - e % 3 : e - e % 3;
// find difference in exponents, and calculate the value without exponent
var valueWithoutExp = value.mul(Math.pow(10, -newExp));
var valueStr = valueWithoutExp.toPrecision(precision);
if (valueStr.includes('e')) {
var BigNumber = value.constructor;
valueStr = new BigNumber(valueStr).toFixed();
}
return valueStr + 'e' + (e >= 0 ? '+' : '') + newExp.toString();
}
/**
* Format a number in exponential notation. Like '1.23e+5', '2.3e+0', '3.500e-3'
* @param {BigNumber} value
* @param {number} [precision] Number of digits in formatted output.
* If not provided, the maximum available digits
* is used.
* @returns {string} str
*/
export function toExponential(value, precision) {
if (precision !== undefined) {
return value.toExponential(precision - 1); // Note the offset of one
} else {
return value.toExponential();
}
}
/**
* Format a number with fixed notation.
* @param {BigNumber} value
* @param {number} [precision=undefined] Optional number of decimals after the
* decimal point. Undefined by default.
*/
export function toFixed(value, precision) {
return value.toFixed(precision);
}
function _toNumberOrDefault(value, defaultValue) {
if (isNumber(value)) {
return value;
} else if (isBigNumber(value)) {
return value.toNumber();
} else {
return defaultValue;
}
}

View File

@@ -0,0 +1,39 @@
/**
* Compares two BigNumbers.
* @param {BigNumber} a - First value to compare
* @param {BigNumber} b - Second value to compare
* @param {number} [relTol=1e-09] - The relative tolerance, indicating the maximum allowed difference relative to the larger absolute value. Must be greater than 0.
* @param {number} [absTol=0] - The minimum absolute tolerance, useful for comparisons near zero. Must be at least 0.
* @returns {boolean} whether the two numbers are nearly equal
* @throws {Error} If `relTol` is less than or equal to 0.
* @throws {Error} If `absTol` is less than 0.
*
* @example
* nearlyEqual(1.000000001, 1.0, 1e-9); // true
* nearlyEqual(1.000000002, 1.0, 0); // false
* nearlyEqual(1.0, 1.009, undefined, 0.02); // true
* nearlyEqual(0.000000001, 0.0, undefined, 1e-8); // true
*/
export function nearlyEqual(a, b) {
var relTol = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1e-9;
var absTol = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : 0;
if (relTol <= 0) {
throw new Error('Relative tolerance must be greater than 0');
}
if (absTol < 0) {
throw new Error('Absolute tolerance must be at least 0');
}
// NaN
if (a.isNaN() || b.isNaN()) {
return false;
}
if (!a.isFinite() || !b.isFinite()) {
return a.eq(b);
}
// use "==" operator, handles infinities
if (a.eq(b)) {
return true;
}
// abs(a-b) <= max(relTol * max(abs(a), abs(b)), absTol)
return a.minus(b).abs().lte(a.constructor.max(a.constructor.max(a.abs(), b.abs()).mul(relTol), absTol));
}