import toArrayBuffer from 'to-arraybuffer' import { Buffer } from 'buffer' // 兼容浏览器环境 import { BigInteger, SecureRandom } from 'jsbn' import { ECCurveFp } from './ec' import { C1C2C3, C1C3C2, PC } from './const' import { leftPad } from '../utils' import { digest } from '../sm3' // SM2 相关常量 export const constants = { C1C2C3, C1C3C2, PC } const rng = new SecureRandom() const { curve, G, n } = (() => { // p: 大于 3 的素数 const p = new BigInteger( 'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF', 16 ) // a,b: Fq 中的元素,它们定义 Fq 上的一条椭圆曲线 E const a = new BigInteger( 'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC', 16 ) const b = new BigInteger( '28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93', 16 ) const curve = new ECCurveFp(p, a, b) // 椭圆曲线的一个基点,其阶为素数 const gxHex = '32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7' const gyHex = 'BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0' const G = curve.decodePointHex(PC + gxHex + gyHex) // 基点 G 的阶 const n = new BigInteger( 'FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123', 16 ) return { curve, G, n } })() /** * 密钥派生函数 * a) 初始化一个 32 比特构成的计数器 ct=0x00000001 * b) 对 i 从 1 到 ⌈klen/v⌉ 执行 * b.1) 计算 Hai=Hv(Z ∥ ct) * b.2) ct++; * c) 若 klen/v 是整数,令 Ha!⌈klen/v⌉ = Ha⌈klen/v⌉,否则令 Ha!⌈klen/v⌉ 为 Ha⌈klen/v⌉ 最左边的 (klen − (v × ⌊klen/v⌋)) 比特 * d) 令K = Ha1||Ha2|| · · · ||Ha⌈klen/v⌉−1||Ha!⌈klen/v⌉ */ function KDF(Z, klen) { const list = [] const times = Math.ceil(klen / 32) const mod = klen % 32 for (let i = 1; i <= times; i++) { const ct = Buffer.allocUnsafe(4) ct.writeUInt32BE(i) const hash = digest(Buffer.concat([Z, ct])) // Fix: 浏览器端 Buffer.concat 实现有问题,处理不了 list 总长度超过 klen 的情况 list.push( i === times && mod ? Buffer.from(hash).slice(0, mod) : Buffer.from(hash) ) } return Buffer.concat(list, klen) } /** * 生成密钥对 * a) 用随机数发生器产生整数 d ∈ [1,n−2] * b) G 为基点,计算点 P = (xP,yP) = [d]G * c) 密钥对是 (d,P),其中 d 为私钥,P 为公钥 */ export const generateKeyPair = () => { // a) 用随机数发生器产生整数 d ∈ [1,n−2] const d = new BigInteger(n.bitLength(), rng) .mod(n.subtract(new BigInteger('2'))) .add(BigInteger.ONE) const privateKey = leftPad(d.toString(16), 64) // b) G 为基点,计算点 P = (xP,yP) = [d]G const P = G.multiply(d) const Px = leftPad(P.getX().toBigInteger().toString(16), 64) const Py = leftPad(P.getY().toBigInteger().toString(16), 64) const publicKey = PC + Px + Py // 密钥对是 (d,P),其中 d 为私钥,P 为公钥 return { privateKey, publicKey } } /** * 设需要发送的消息为比特串 M,klen 为 M 的比特长度。 * 为了对明文 M 进行加密,作为加密者的用户 A 应实现以下运算步骤: * A1:用随机数发生器产生随机数 k∈[1,n-1] * A2:计算椭圆曲线点 C1=[k]G=(x1,y1) * A3:计算椭圆曲线点 S=[h]PB,若 S 是无穷远点,则报错并退出 * A4:计算椭圆曲线点 [k]PB=(x2,y2) * A5:计算 t=KDF(x2 ∥ y2, klen),若 t 为全 0 比特串,则返回 A1 * A6:计算 C2 = M ⊕ t; * A7:计算 C3 = Hash(x2 ∥ M ∥ y2); * A8:输出密文 C = C1 ∥ C2 ∥ C3 or C1 ∥ C3 ∥ C2 * * @param {string|Buffer|ArrayBuffer} data * @param {string} publicKey */ export function encrypt(data, publicKey, options) { const { mode = C1C3C2, inputEncoding, outputEncoding, pc } = options || {} // 明文消息类型校验 `string` | `ArrayBuffer` | `Buffer` if (typeof data === 'string') { data = Buffer.from(data, inputEncoding || 'utf8') } else if (data instanceof ArrayBuffer) { data = Buffer.from(data) } if (!Buffer.isBuffer(data)) { throw new TypeError( `Expected "string" | "Buffer" | "ArrayBuffer" but received "${Object.prototype.toString.call( data )}"` ) } // 随机数 k∈[1,n-1] const k = new BigInteger(n.bitLength(), rng) .mod(n.subtract(BigInteger.ONE)) .add(BigInteger.ONE) // C1 = [k]G = (x1,y1) const point1 = G.multiply(k) const x1 = leftPad(point1.getX().toBigInteger().toString(16), 64) const y1 = leftPad(point1.getY().toBigInteger().toString(16), 64) const C1 = x1 + y1 // TODO: 计算椭圆曲线点 S=[h]PB,若 S 是无穷远点,则报错并退出 // [k]PB = (x2,y2) const point2 = curve.decodePointHex(publicKey).multiply(k) const x2 = leftPad(point2.getX().toBigInteger().toString(16), 64) const y2 = leftPad(point2.getY().toBigInteger().toString(16), 64) // t = KDF(x2 ∥ y2, klen),若 t 为全 0 比特串,则返回 A1 const t = KDF(Buffer.from(x2 + y2, 'hex'), data.length) // C2 = M ⊕ t const C2 = leftPad( new BigInteger(data.toString('hex'), 16) .xor(new BigInteger(t.toString('hex'), 16)) .toString(16), data.length * 2 ) // C3 = Hash(x2 ∥ M ∥ y2) const C3 = digest(x2 + data.toString('hex') + y2, 'hex', 'hex') const buff = Buffer.from((pc ? '04' : '') + (mode === C1C2C3 ? C1 + C2 + C3 : C1 + C3 + C2), 'hex') return outputEncoding ? buff.toString(outputEncoding) : toArrayBuffer(buff) } /** * 设 klen 为密文中 C2 的比特长度 * 为了对密文 C= C1 ∥ C2 ∥ C3 进行解密,作为解密者的用户B应实现以下运算步骤: * B1:从 C 中取出比特串 C1,转换为椭圆曲线上的点 * B2:计算椭圆曲线点 S=[h]C1,若 S 是无穷远点,则报错并退出; * B3:计算 [dB]C1=(x2,y2),将坐标 x2、y2 的数据类型转换为比特串; * B4:计算 t=KDF(x2 ∥ y2, klen),若 t 为全 0 比特串,则报错并退出; * B5:从 C 中取出比特串 C2,计算 M′ = C2 ⊕ t; * B6:计算 u = Hash(x2 ∥ M′ ∥ y2),从 C 中取出比特串 C3,若u ̸= C3,则报错并退出; * B7:输出明文M′ * * @param {string|Buffer|ArrayBuffer} data * @param {string} publicKey */ export function decrypt(data, privateKey, options) { const { mode = C1C3C2, inputEncoding, outputEncoding, pc } = options || {} // 密文数据类型校验 `string` | `ArrayBuffer` | `Buffer` if (typeof data === 'string') { data = Buffer.from(data, inputEncoding) } else if (data instanceof ArrayBuffer) { data = Buffer.from(data) } if (!Buffer.isBuffer(data)) { throw new TypeError( `Expected "string" | "Buffer" | "ArrayBuffer" but received "${Object.prototype.toString.call( data )}"` ) } data = pc ? data.slice(1) : data const unit = 32 // 从 C 中取出比特串 C1,转换为椭圆曲线上的点 const x1 = data.slice(0, unit).toString('hex') const y1 = data.slice(unit, 2 * unit).toString('hex') const point1 = curve.decodePointHex(PC + x1 + y1) // TODO: 计算椭圆曲线点 S=[h]C1,若 S 是无穷远点,则报错并退出; // [dB]C1 = (x2,y2) const point2 = point1.multiply(new BigInteger(privateKey, 16)) const x2 = leftPad(point2.getX().toBigInteger().toString(16), 64) const y2 = leftPad(point2.getY().toBigInteger().toString(16), 64) // 根据拼接模式拆分数据 C2, C3 let C3 = data.slice(2 * unit, 3 * unit) let C2 = data.slice(3 * unit) if (mode === C1C2C3) { C3 = data.slice(data.length - unit) C2 = data.slice(2 * unit, data.length - unit) } // t = KDF(x2 ∥ y2, klen),若 t 为全 0 比特串,则返回 A1 const t = KDF(Buffer.from(x2 + y2, 'hex'), C2.length) // M′ = C2 ⊕ t const M = new BigInteger(C2.toString('hex'), 16) .xor(new BigInteger(t.toString('hex'), 16)) .toString(16) // 计算 u = Hash(x2 ∥ M′ ∥ y2) const u = digest(x2 + M + y2, 'hex', 'hex') // 合法性校验 const verified = u === C3.toString('hex') const buff = verified ? Buffer.from(M, 'hex') : Buffer.alloc(0) return outputEncoding ? buff.toString(outputEncoding) : toArrayBuffer(buff) }