Files
zgty-mas-m/nx/utils/gm-crypto/lib/sm2/ec.js
houjunxiang 386f1e7466 1
2025-10-09 18:19:55 +08:00

416 lines
9.8 KiB
JavaScript

// Basic Javascript Elliptic Curve implementation
// Ported loosely from BouncyCastle's Java EC code
// Only Fp curves implemented for now
// Requires jsbn.js and jsbn2.js
import { BigInteger } from 'jsbn'
const { Barrett } = BigInteger.prototype
// Basic Javascript Elliptic Curve implementation
// Ported loosely from BouncyCastle's Java EC code
// Only Fp curves implemented for now
// Requires jsbn.js and jsbn2.js
// ----------------
// ECFieldElementFp
// constructor
function ECFieldElementFp(q, x) {
this.x = x
// TODO if(x.compareTo(q) >= 0) error
this.q = q
}
function feFpEquals(other) {
if (other == this) return true
return this.q.equals(other.q) && this.x.equals(other.x)
}
function feFpToBigInteger() {
return this.x
}
function feFpNegate() {
return new ECFieldElementFp(this.q, this.x.negate().mod(this.q))
}
function feFpAdd(b) {
return new ECFieldElementFp(this.q, this.x.add(b.toBigInteger()).mod(this.q))
}
function feFpSubtract(b) {
return new ECFieldElementFp(
this.q,
this.x.subtract(b.toBigInteger()).mod(this.q)
)
}
function feFpMultiply(b) {
return new ECFieldElementFp(
this.q,
this.x.multiply(b.toBigInteger()).mod(this.q)
)
}
function feFpSquare() {
return new ECFieldElementFp(this.q, this.x.square().mod(this.q))
}
function feFpDivide(b) {
return new ECFieldElementFp(
this.q,
this.x.multiply(b.toBigInteger().modInverse(this.q)).mod(this.q)
)
}
ECFieldElementFp.prototype.equals = feFpEquals
ECFieldElementFp.prototype.toBigInteger = feFpToBigInteger
ECFieldElementFp.prototype.negate = feFpNegate
ECFieldElementFp.prototype.add = feFpAdd
ECFieldElementFp.prototype.subtract = feFpSubtract
ECFieldElementFp.prototype.multiply = feFpMultiply
ECFieldElementFp.prototype.square = feFpSquare
ECFieldElementFp.prototype.divide = feFpDivide
// ----------------
// ECPointFp
// constructor
export function ECPointFp(curve, x, y, z) {
this.curve = curve
this.x = x
this.y = y
// Projective coordinates: either zinv == null or z * zinv == 1
// z and zinv are just BigIntegers, not fieldElements
if (z == null) {
this.z = BigInteger.ONE
} else {
this.z = z
}
this.zinv = null
//TODO: compression flag
}
function pointFpGetX() {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q)
}
var r = this.x.toBigInteger().multiply(this.zinv)
this.curve.reduce(r)
return this.curve.fromBigInteger(r)
}
function pointFpGetY() {
if (this.zinv == null) {
this.zinv = this.z.modInverse(this.curve.q)
}
var r = this.y.toBigInteger().multiply(this.zinv)
this.curve.reduce(r)
return this.curve.fromBigInteger(r)
}
function pointFpEquals(other) {
if (other == this) return true
if (this.isInfinity()) return other.isInfinity()
if (other.isInfinity()) return this.isInfinity()
var u, v
// u = Y2 * Z1 - Y1 * Z2
u = other.y
.toBigInteger()
.multiply(this.z)
.subtract(this.y.toBigInteger().multiply(other.z))
.mod(this.curve.q)
if (!u.equals(BigInteger.ZERO)) return false
// v = X2 * Z1 - X1 * Z2
v = other.x
.toBigInteger()
.multiply(this.z)
.subtract(this.x.toBigInteger().multiply(other.z))
.mod(this.curve.q)
return v.equals(BigInteger.ZERO)
}
function pointFpIsInfinity() {
if (this.x == null && this.y == null) return true
return (
this.z.equals(BigInteger.ZERO) &&
!this.y.toBigInteger().equals(BigInteger.ZERO)
)
}
function pointFpNegate() {
return new ECPointFp(this.curve, this.x, this.y.negate(), this.z)
}
function pointFpAdd(b) {
if (this.isInfinity()) return b
if (b.isInfinity()) return this
// u = Y2 * Z1 - Y1 * Z2
var u = b.y
.toBigInteger()
.multiply(this.z)
.subtract(this.y.toBigInteger().multiply(b.z))
.mod(this.curve.q)
// v = X2 * Z1 - X1 * Z2
var v = b.x
.toBigInteger()
.multiply(this.z)
.subtract(this.x.toBigInteger().multiply(b.z))
.mod(this.curve.q)
if (BigInteger.ZERO.equals(v)) {
if (BigInteger.ZERO.equals(u)) {
return this.twice() // this == b, so double
}
return this.curve.getInfinity() // this = -b, so infinity
}
var THREE = new BigInteger('3')
var x1 = this.x.toBigInteger()
var y1 = this.y.toBigInteger()
var x2 = b.x.toBigInteger()
var y2 = b.y.toBigInteger()
var v2 = v.square()
var v3 = v2.multiply(v)
var x1v2 = x1.multiply(v2)
var zu2 = u.square().multiply(this.z)
// x3 = v * (z2 * (z1 * u^2 - 2 * x1 * v^2) - v^3)
var x3 = zu2
.subtract(x1v2.shiftLeft(1))
.multiply(b.z)
.subtract(v3)
.multiply(v)
.mod(this.curve.q)
// y3 = z2 * (3 * x1 * u * v^2 - y1 * v^3 - z1 * u^3) + u * v^3
var y3 = x1v2
.multiply(THREE)
.multiply(u)
.subtract(y1.multiply(v3))
.subtract(zu2.multiply(u))
.multiply(b.z)
.add(u.multiply(v3))
.mod(this.curve.q)
// z3 = v^3 * z1 * z2
var z3 = v3.multiply(this.z).multiply(b.z).mod(this.curve.q)
return new ECPointFp(
this.curve,
this.curve.fromBigInteger(x3),
this.curve.fromBigInteger(y3),
z3
)
}
function pointFpTwice() {
if (this.isInfinity()) return this
if (this.y.toBigInteger().signum() == 0) return this.curve.getInfinity()
// TODO: optimized handling of constants
var THREE = new BigInteger('3')
var x1 = this.x.toBigInteger()
var y1 = this.y.toBigInteger()
var y1z1 = y1.multiply(this.z)
var y1sqz1 = y1z1.multiply(y1).mod(this.curve.q)
var a = this.curve.a.toBigInteger()
// w = 3 * x1^2 + a * z1^2
var w = x1.square().multiply(THREE)
if (!BigInteger.ZERO.equals(a)) {
w = w.add(this.z.square().multiply(a))
}
w = w.mod(this.curve.q)
//this.curve.reduce(w);
// x3 = 2 * y1 * z1 * (w^2 - 8 * x1 * y1^2 * z1)
var x3 = w
.square()
.subtract(x1.shiftLeft(3).multiply(y1sqz1))
.shiftLeft(1)
.multiply(y1z1)
.mod(this.curve.q)
// y3 = 4 * y1^2 * z1 * (3 * w * x1 - 2 * y1^2 * z1) - w^3
var y3 = w
.multiply(THREE)
.multiply(x1)
.subtract(y1sqz1.shiftLeft(1))
.shiftLeft(2)
.multiply(y1sqz1)
.subtract(w.square().multiply(w))
.mod(this.curve.q)
// z3 = 8 * (y1 * z1)^3
var z3 = y1z1.square().multiply(y1z1).shiftLeft(3).mod(this.curve.q)
return new ECPointFp(
this.curve,
this.curve.fromBigInteger(x3),
this.curve.fromBigInteger(y3),
z3
)
}
// Simple NAF (Non-Adjacent Form) multiplication algorithm
// TODO: modularize the multiplication algorithm
function pointFpMultiply(k) {
if (this.isInfinity()) return this
if (k.signum() == 0) return this.curve.getInfinity()
var e = k
var h = e.multiply(new BigInteger('3'))
var neg = this.negate()
var R = this
var i
for (i = h.bitLength() - 2; i > 0; --i) {
R = R.twice()
var hBit = h.testBit(i)
var eBit = e.testBit(i)
if (hBit != eBit) {
R = R.add(hBit ? this : neg)
}
}
return R
}
// Compute this*j + x*k (simultaneous multiplication)
function pointFpMultiplyTwo(j, x, k) {
var i
if (j.bitLength() > k.bitLength()) i = j.bitLength() - 1
else i = k.bitLength() - 1
var R = this.curve.getInfinity()
var both = this.add(x)
while (i >= 0) {
R = R.twice()
if (j.testBit(i)) {
if (k.testBit(i)) {
R = R.add(both)
} else {
R = R.add(this)
}
} else {
if (k.testBit(i)) {
R = R.add(x)
}
}
--i
}
return R
}
ECPointFp.prototype.getX = pointFpGetX
ECPointFp.prototype.getY = pointFpGetY
ECPointFp.prototype.equals = pointFpEquals
ECPointFp.prototype.isInfinity = pointFpIsInfinity
ECPointFp.prototype.negate = pointFpNegate
ECPointFp.prototype.add = pointFpAdd
ECPointFp.prototype.twice = pointFpTwice
ECPointFp.prototype.multiply = pointFpMultiply
ECPointFp.prototype.multiplyTwo = pointFpMultiplyTwo
// ----------------
// ECCurveFp
// constructor
export function ECCurveFp(q, a, b) {
this.q = q
this.a = this.fromBigInteger(a)
this.b = this.fromBigInteger(b)
this.infinity = new ECPointFp(this, null, null)
this.reducer = new Barrett(this.q)
}
function curveFpGetQ() {
return this.q
}
function curveFpGetA() {
return this.a
}
function curveFpGetB() {
return this.b
}
function curveFpEquals(other) {
if (other == this) return true
return (
this.q.equals(other.q) && this.a.equals(other.a) && this.b.equals(other.b)
)
}
function curveFpGetInfinity() {
return this.infinity
}
function curveFpFromBigInteger(x) {
return new ECFieldElementFp(this.q, x)
}
function curveReduce(x) {
this.reducer.reduce(x)
}
// for now, work with hex strings because they're easier in JS
function curveFpDecodePointHex(s) {
switch (
parseInt(s.substr(0, 2), 16) // first byte
) {
case 0:
return this.infinity
case 2:
case 3:
// point compression not supported yet
return null
case 4:
case 6:
case 7:
var len = (s.length - 2) / 2
var xHex = s.substr(2, len)
var yHex = s.substr(len + 2, len)
return new ECPointFp(
this,
this.fromBigInteger(new BigInteger(xHex, 16)),
this.fromBigInteger(new BigInteger(yHex, 16))
)
default:
// unsupported
return null
}
}
function curveFpEncodePointHex(p) {
if (p.isInfinity()) return '00'
var xHex = p.getX().toBigInteger().toString(16)
var yHex = p.getY().toBigInteger().toString(16)
var oLen = this.getQ().toString(16).length
if (oLen % 2 != 0) oLen++
while (xHex.length < oLen) {
xHex = '0' + xHex
}
while (yHex.length < oLen) {
yHex = '0' + yHex
}
return '04' + xHex + yHex
}
ECCurveFp.prototype.getQ = curveFpGetQ
ECCurveFp.prototype.getA = curveFpGetA
ECCurveFp.prototype.getB = curveFpGetB
ECCurveFp.prototype.equals = curveFpEquals
ECCurveFp.prototype.getInfinity = curveFpGetInfinity
ECCurveFp.prototype.fromBigInteger = curveFpFromBigInteger
ECCurveFp.prototype.reduce = curveReduce
ECCurveFp.prototype.decodePointHex = curveFpDecodePointHex
ECCurveFp.prototype.encodePointHex = curveFpEncodePointHex